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Abstract—In industrial and open-source software engineering
tasks, developers often perform project-wise code editing tasks,
including feature enhancement, refactoring, and bug fixing,
where the leading AI models are expected to support the
productivity. Hence, researchers and practitioners have proposed
and adopted many LLM-based solutions to facilitate their real-
world development. However, they largely suffer from the balance
among predicting scope, accuracy, and efficiency. For example,
solutions like Cursor achieve high accuracy only in a local editing
scope while its performance drops on cross-file edits. In contrast,
solutions like CoEdPilot exhibit efficiency limitations when used
to predict project-wise edits.

In this work, we propose TRACE (Tool-integrated Recom-
mendAtion for Code Editing), a novel subsequent code editing
solution to push the boundary of scope, accuracy, and effi-
ciency. Our rationale lies in that code edits are triggered for
either semantic or syntactic reasons. Therefore, TRACE predicts
subsequent edits by interleaving neural-based induction for
semantic edit prediction and tool-based deduction for syntactic
edit prediction. The tools can be any IDE facilities, such as
refactoring tools (e.g., rename) or linting tools (e.g., use-def),
providing decent performance of deducing edit-location and edit-
generation. Technically, we address the challenge of (1) when to
interleave between neural-based and tool-based prediction and
(2) how to further improve the performance of neural-based
prediction. As for the former, we learn a neural model to detect
when to invoke IDE editing tools. As for the latter, we propose
a novel and fine-grained editing representation to further boost
the performance of neural editing models.

Our extensive experiments show that, in comparison to the
state-of-the-arts such as CoEdPilot, GrACE, and CCT5, TRACE
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significantly improves the performance of edit location (by
43.76 %) and edit generation (by 11.16%). Our simulation experi-
ment on an interactive editing setting shows that TRACE achieves
an acceptance rate 6.15% higher than Cursor. Moreover, our
user study consists of 24 participants on Cursor, CoEdPilot, and
TRACE, on three code editing tasks. The results show that the
experimental group with TRACE achieves leading performance
on cross-file global edits. In addition, we observe concerning user
behaviours on how participants deal with false predictions by the
tools, shedding light on the design of future code-editing tools.

Index Terms—code editing, subsequent edit prediction, neural-
based induction, tool-based deduction

I. INTRODUCTION

Recent years have witnessed a surge in applying large
language models (LLM) for code generation [1], [2], [3],
[4]], [5]. Despite their success in translating natural language
descriptions into target code, incremental code edits across the
project are more common in practice. Empirical observation
shows that such incremental code edits account for over 70%
of changes over the code commit history [6]. It highlights
the need for predicting project-wise subsequent code edits,
which can significantly improve the productivity of software
developers. Existing works in the community have made the
following efforts to address the problem.

Local Edit Solution. A line of code edit works [7], [8l,
[9], [10], [L1] simplifies the edit generation problem into a
machine translation task. In general, these approaches take
as input the pre-edit code, and generate the post-edit code
as output. Since those approaches cannot predict the edit
location, they are generally limited when being applied to
predict project-wise subsequent edits.

Project-wise Edit Solution. In this context, several industry
solutions, such as Copilot Edits and Cursor’s next edit sugges-
tion [12], [13]], have emerged. However, due to latency and cost
considerations, these solutions appear to be conservative when
recommending cross-file edits, often degrading into merely
local edit suggestions. When cross-file edits are expected,



users typically rely on features like Copilot Chat or Cursor

Chat, where they must specify files to edit, requiring prior

knowledge and risking overlooked files.

Meanwhile, in the research community, the most relevant
work is CoEdPilot [[14], which provides a project-wise solution
regarding both edit location and generation, by orchestrating
a set of models. A locator model is trained to predict the
edit type of each line of code in the code window. If a line
is predicted to be modified (e.g., insert or replace), then a
generator model generates its edit solution. Both the locator
and generator models also incorporate prior edits as user
feedback to infer the implicit edit specification.

Despite these advances toward a practical Al pair program-
mer solution, they still suffer from the following challenges:
« C1 (Location Overhead): A software project can be large,

meaning the model may process numerous code windows to

locate subsequent edits. Therefore, exhaustively monitoring
the whole project upon any code edits, can incur non-trivial
runtime overhead, and undermine the performance.

o C2 (Overlooked Edit Composition): Existing neural-based
solutions predict each code edit as an individual hunk (i.e.,
consecutive lines of code change, see example hunks in
[Table T). Despite its rapid evolution, neural-based induction
inherently suffers from non-trivial computational overhead
for scanning the entire codebase and remains fundamentally
prone to hallucinations [[15]. Moreover, [16] shows that
LLMs perform poorly on static analysis tasks and that pre-
training on such tasks does not improve general code intelli-
gence. However, in practice, hunks can be highly associated
or occur simultaneously, forming high-level actions like
refactoring. We refer to these grouped edits as edit com-
positions, where edits exhibit coherence, meaning they are
likely to propagate to each other, and this propagation can
often be captured by static analysis tools, which guarantee
both speed and correctness.

¢ C3 (Coarse-grained Edit Representation): The existing
state-of-the-arts [7]], [8l], [O, [LO], [11] adopt the git-diff-
style representation [[17], modeling code edits as replace-
ments or insertions (see [Table TI| H1 as an example). While
being widely adopted, such a coarse-grained edit represen-
tation can express semantically different editing scenarios in
a similar way (see H2 as an example), leading to
training inefficiency when learning the code-editing models.
To address the above challenges, we propose TRACE (Tool-

integrated RecommendAtion for Code Editing), predicting

project-wise subsequent code edits primarily based on a set
of prior edits. Our rationale lies in that code edits are trig-
gered for either semantic or syntactic reasons. Therefore,

TRACE predicts subsequent edits by interleaving neural-

based induction for semantic edit prediction and tool-based

deduction for syntactic edit prediction. Technically, TRACE
recommends subsequent edits through a pipelined workflow.

At each step, an edit-composition invoker first monitors the

ongoing session and checks whether the prior edits match

pre-defined edit compositions. In such cases, TRACE applies

tool-based deduction, proactively invoking IDE services (e.g.,

rename, use-def update, or remove unused imports). This
mechanism leverages the syntactic coherence among edits in
a composition to quickly narrow down candidate locations,
especially when edits span multiple files. If no tool service
is triggered, TRACE falls back to neural-based induction,
which applies a sliding window over the project with our
edit locator and edit generator. Both are equipped with the
novel edit representation to distinguish diverse edit scenarios
(see [Table III)). In this way, TRACE integrates tool invocation
with neural inference into a feedback-driven pipeline that
progressively recommends coherent edits.

We extensively evaluate tool on 38K code commits from
678 projects across 5 programming languages. Compared
to state-of-the-arts, (1) TRACE significantly improves edit
location precision by 43.76%, recall by 9.96%, and edit gener-
ation accuracy by 11.16%. (2) TRACE can well identify edit
composition and invoke tools appropriately (92.45% precision
and 94.63% recall), (3) The novel edit representation enhances
the neural edit locator by 14.57% and generator by 7.40%. In
edit simulation, tool reduces time cost by 14.40% and achieves
27.71% suggestion acceptance, comparable to Cursor. A user
study with 24 participants on 3 tasks confirms TRACE’s
effectiveness in recommending project-wise, cross-file edits.

Overall, we summarize our contributions as follows:

« Methodology. To the best of our knowledge, we are the first
to propose to predict project-wise subsequent edits by in-
terleaving neural-based induction and tool-based deduction.
This solution can largely mitigate the LLM hallucination
and improve the runtime efficiency (especially for edit
location). In addition, we discover a more expressive edit
representation to further advance the performance of the
neural edit locator and generator.

o Tool. We implement TRACE as a Visual Studio Code
(VS Code) extension [18] for interactive edit localization
and generation. TRACE is designed to smoothly integrate
Language Service Protocol (LSP) invocation and neural
edit location/generation, potentially helping programmers
accomplish their tasks in practice.

« Evaluation. We extensively and systematically evaluate
TRACE on 38K code commits, spanning over 678 source
projects and 5 programming languages, via benchmarks and
real-world editing simulation, establishing TRACE as the
new state-of-the-art project-wise code editing solution.

o User Study. We further conducted a user study with 24
participants over 3 editing tools, totalling about 118 man-
hours. The results confirm the effectiveness of our design
in practice, also revealing a concerning over-trust phe-
nomenon among participants, regardless of their experience.
This highlights directions for improving future code-editing
solutions.

Additional demonstration videos, source code, supplemen-
tary experimental information, and user study video recordings
are available at our homepage [19]].



TABLE I: Example 1: Composite edit v.s. individual edit

File: executor/window.go

||~ func renewWithCapacity (chk #Chunk,cap int) =Chunk {
Hl 2|+ func renewWithCapacity (chk xChunk,cap,maxChunkSize int) xChunk {

3 newChk := new(Chunk)

newChk.capacity = cap

H2 6= newChk.requiredRows = cap

7|+ newChk.requiredRows = maxChunkSize

8 return newChk
H3 9[- return renewWithCapacity (chk, newCap)

10|+ return renewWithCapacity(chk, newCap, maxChunkSize)

File: util/chunk/row.go

H4 |- newChk := renewWithCapacity(r.c, 1)

121+ newChk := renewWithCapacity(r.c, 1, 1)

II. PROBLEM STATEMENT

In this work, the problem statement is formulated as follows.

Given the following inputs:

o A software project P = {f1,...
file in the project,

o A sequence of prior edits as E, = (e1,...,e;) in an
edit session, where the subscript ¢ € [0, k] is the chrono-
logical order. Each edit e € E, is defined as e =
(f,linestart, lineend, codey, code, ), where f € P denotes
the file where the edit e happens, linegsqr+ and linecnq
denote the scope of e in f, code, and code, denote code
before and after the edit in the scope (linesiart, lin€end)-

o An optional edit description prompt.

, fn}, where f; is a source

our TRACE solution is to generate ex; in the editing session
based on P, E,, and prompt (optional).

Different from the solutions [20], [21], [22] of issue-
resolving tasks like SWE-bench [23] which results in a set
of patches in a project aligning with an issue description,
our task is more progress-driven. Specifically, we predict a
subsequent edit aligning with the flow of prior edits with an
optional prompt. Note that not all the code editing tasks are
driven by a detailed issue description.

III. MOTIVATING EXAMPLE
A. Tool-inducing Edit Composition

shows four hunks (denoted by H;) over two source
files, extracted from commiﬂ in project ping/tidb. Hunks
can be summarized into two actions (Al and A2):

o Al: Method Signature Update: The function renewWith
Capacity () is updated to include a new parameter max
ChunkSize, which includes H1 (line 1-4), H3 (line 9-10),
and H4 (line 11-12). The three hunks are mutually depen-
dent, as the method signature update propagates across them.

o A2: Attribute Initialization Update: H2 (lines 5-8) up-
dates the initialization of newChk .requiredRows from
variable cap to maxChunkSize.

The state-of-the-art edit locator, CoEdPilot [14]], predicts
these hunks sequentially. As for the first action (Al), given
a prior edit as HI, it requires an LLM to analyze the
entire project code to infer whether and what changes will

Uhttps://github.com/pingcap/tidb/commit/fcef061

be propagated. The challenge lies in the substantial compu-
tational overhead required to scan the entire codebase, as
well as the risk of false positives in similar textual pat-
terns, such as newWithCapacity () and renewColumns
WithCapacity (), caused by LM hallucination.

In this work, we mitigate such overhead and false positives
by learning to invoke the inherent static tools in IDE. Specif-
ically, we monitor the code-editing session and infer when to
invoke a static tool based on prior edits (e.g., H1), to retrieve
the rest of edit composition (e.g., H3 and H4), which can (1)
significantly lower the cost and (2) boost the performance of
edit location and generation.

Empirical Study. To validate the wide applicability of
our approach, we empirically measure the frequency of edit
compositions in real-world commits. We collected a dataset
of 38K commits from top-starred GitHub repositories across
5 languages (dataset detail refers to in Section
Experiment Setup). Following the benchmark construction
methodology described in Section [V-D] we applied LSP-based
analysis to detect four types of edit compositions: variable
renames, function renames, definition/reference lookups, and
code clones. shows that 53.6% of commits contain
at least one type of predefined edit composition detectable by
LSP services, with 16.4% involving multiple types, indicating
a high frequency of edit composition in real-world editing
scenarios.

Challenges. To deliver this potential, TRACE needs to
address when and what edit composition to invoke. First, an
IDE may support various edit compositions, which may result
in misleading invocation opportunities. For example, H2 in
may indicate a renaming edit, as it replaces all in-
stances of cap with maxChunkSize. However, this reflects
a usage change rather than a true renaming edit. Applying
a rename tool here may introduce incorrect changes across
multiple locations and files, which can be costly to undo the
changes. Second, even with accurate composition prediction,
key details may remain missing. For example, knowing Hl
triggers a signature update still leaves the parameter choices
in H3 and H4 to be inferred.

Thus, we use TRACE as a hybrid solution combining an
edit-composition invoker, a neural edit locator and a neural
edit generator that complement each other. On the one hand,
the edit-composition invoker can speed up the edit locator and
edit generator with higher confidence. On the other hand, the
edit locator and edit generator can complement the missing
details for the edit-composition invoker. This enables TRACE
to better predict project-wise code edits.

B. Edit Representation

shows a commif]] from stable-diffusion-
webui, A web interface for Stable Diffusion models, moti-
vating us to further design a new edit representation. Existing
works [14]], [9], [8]] represent code edits as code lines labelled

Zhttps://github.com/AUTOMATIC1111/stable-diffusion-
webui/commit/9e27af7
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Variable Rename
Function Rename

6675 6424
(17.3%)

(16.6%)

Language Per?;?)t age
Python 17.76
Go 18.32
Java 17.03
JavaScript 20.81
TypeScript 19.20
Avg. 18.04

TABLE II: Percentage of edit
hunks with multiple semantics.

Fig. 1: Percentage of com-
mits with edit composition.

with replace, insert, and keep. For example, for H1 in
line 1 has a tag of <KEEP> and line 2 has a tag of <RE-
PLACE>. Existing solutions follow the git-diff representation
as shown in H1, H2, and H3.

However, we observe that such a representation represents
different scenarios in a similar way, which can cause training
confusion. For example, the representation in H1 indicates that
the i f condition (line 2) should be changed into a code block
(line 3-5 in H1), which can hardly be learned to generalized
to H2 and H3. Nevertheless, probing into the details of H1
indicates that the single hunk contains two edit semantics:
both insert (line 2,3 in H1’) and replace (line 4,5 in H1’),
which are under-represented by the unified replace label in
git diff. In other words, reformulating the edit representation
as H1’ enables the model to generalize the replacement at line
5 (in H1’) to H2 and H3 in a far more convenient way during
model training.

Empirical Study. To validate the prevalence of such multi-
semantic hunks, we apply in Section [V-4] to
analyze the number of distinct edit semantics contained in
each edit hunk from our dataset. We compute the percentage
of edit hunks that encompass more than one edit semantic
(e.g., code deletion and replacement within the same hunk).
shows that 18.04% of edit hunks involve multiple edit
semantics that are not fully captured by the traditional git-diff
format.

Given the observation, we propose a new edit representation
with 6 editing labels in contrast to 3 traditional editing
labels (i.e., replace, insert, and keep), further boosting the
performance of neural edit locator and generator.

IV. METHODOLOGY

shows an overview of TRACE, which takes the
code project P, the user’s prior edits F,, and optional edit
description prompt as input, and recommends the subsequent
code edit e;y1 in terms of both location and content. The
generated code edit serves as a new prior edit to predict the
subsequent edits. TRACE orchestrates three neural network
models, which function as follows:

« Edit-composition invoker: Given the prior edits E,, the
edit-composition invoker checks whether the last edit ey, is
part of a pre-defined edit composition (e.g., variable rename

TABLE III: Example 2: Edit representation beyond replace-
ment

File: modules/sd_samplers_kdiffusion.py

extra_params_kwargs = self.initialize (p)

2|~ if ’sigma_min’ in inspect.signature (self.func).parameters:

3|+ parameters = inspect.signature (self.func).parameters
H1 | 4|+ xi = x + noise + sigma_sched[0]
5|+ if ’sigma_min’ in parameters:

6 extra_params_kwargs[’sigma_min’] = sigma_sched[-2]

I| extra_params_kwargs = self.initialize(p)

2|+ parameters = inspect.signature (self.func).parameters
3|+ xi = x + noise * sigma_sched[0]

s
HI1’| +|- if 'sigma_min’ in inspect.signature (self.func).parameters:
5|+ if ’sigma_min’ in parameters:

6 extra_params_kwargs [’ sigma_min’] = sigma_sched[-2]

H2 ‘n’ in inspect.signature (self.func) .parameters:

‘n’ in parameters:

10 extra_params_kwargs[’'n’] = len(sigma_sched) - 1

H3 12|~ if ’sigma_sched’ in inspect.signature (self.func).parameters:
13|+ if ’sigma_sched’ in parameters:

14 extra_params_kwargs[’sigma_sched’] = sigma_sched

Edit-
composition

Prompt

Prior edit R
(optional)

| Def Code Code
: & use clone diagnose

PR K
Variable Function
rename rename

\_ | Pre-defined edit| _#
Fig. 2: Overview of TRACE: TRACE generates code edits (in
terms of the edit location and the edit content) by orchestrating
three models, i.e., edit composition invoker, edit locator, and

edit generator. The generated code edits can serve as new prior
edits to further generate new edits.

Generator

“ - - - Code Edit----"

and def-use update) and, if so, invokes tool services to
retrieve the remaining edits within the same composition.

« Edit locator: Given a code window as a scope, optional
prompt prompt, and prior edits E,,, the edit locator predicts
the edit label of each line of code and each space between
lines. These labels serve as indicators for (1) the editing
location within the scope and (2) the edit types at those
locations, facilitating the follow-up edit content generation.

« Edit generator: Based on the predicted edit types in the
code window, the optional prompt prompt, and F,, the edit
generator predicts the edit content code,,.

Once the latest edit e, is applied to the codebase, it is passed
to the edit-composition invoker. If e is identified as part of
a predefined edit composition, the corresponding tool service
will be automatically triggered. Tools such as variable and
function renaming from LSP provide both edit location and
content, allowing us to skip the locator and generator steps.
Other tools may only provide approximate code windows,
which require further processing by the edit locator and



Edit Representation Reait = Linter, Reodes Linter
Code Representation Reode = Riine

| Riine;s Linter, Reode
Line Representation Riine = Lintine, LoC
Line of Code LoC :=  one line of code
Inter-line Label Linter = <NULL>

\ <INSERT>

| <BLOCK-SPLIT>
Inline Label Lintine = <KEEP>

\ <REPLACE>

\ <DELETE>

Fig. 3: Edit representation of TRACE in BNF, more expressive
for different code editing scenarios, with six edit labels.

generator for contextual analysis. The edit locator analyzes
these windows to label each line and inter-line position based
on context, determining precise editing lines and plans. Sub-
sequently, the generator combines contextual information to
produce the specific edit content for each identified location. If
no composition is detected, TRACE slices the project into code
windows and feeds them into the edit locator for labelling.
Only code windows that receive edit-requiring labels (e.g.,
<REPLACE>, <INSERT>) are subsequently passed to
the generator for edit content generation. In this work, we
train code LLMs as the edit locator and edit generator. Edit
adopted by the user will be added to prior edits for the next
recommendation. Given the space limit, model training hyper-
parameters and input/output examples are available at [19].

A. Edit Representation

Given an edit e, its edit representation specifies what edit
operation type (e.g., insert, keep, replace, delete) is applied
on each line of code in code,. Generally, an edit specified
in Section [lI] can have many representations, which makes
an impact on the model training effectiveness. In this work,
we report a training-friendly representation for the model
to distinguish different editing scenarios. We used BNF to
define our designed edit representation. As shown in
an edit representation (R.4;;) consists of two mter-hne ed1t
labels (Ljnter) and a code representation (R..q.). A code
representation consists of line representations (Ry;,.), the edit
label of a code line (L;pine), and a line code (LoC). The edit
labels are annotated with the edit type defined as follows.

o <KEEP> (L;p1ine): No edit to conduct for a line;

o <REPLACE> (L;piine): A line of code is to modify;

o <DELETE> (L;,1ine): A line of code is to delete.

e <NULL> (Ljnter): No code to insert between lines;

e <INSERT> (L;,er): New code is to insert between lines;

o <BLOCK-SPLIT> (L;pter): A block consists of continu-
ous lines with the same edit type. This edit label is to split
two blocks with different semantics.

An example. illustrates how a real edit hunk from

project localstack/localstackﬁis translated into our

representation. The first column contains inter-line labels and

the second contains inline labels. Compared to the git-diff for-

mat, the representation decomposes coarse-grained differences

3see https://github.com/localstack/localstack/commit/667c6c5.

Algorithm 1 Edit Representation Translation

1: Input: An edit hunk labelled in git-diff format, L
2: Output: An edit hunk labelled in TRACE format, L*
3: code_token_mapping = LCS(parser(L.old_version_code),
parser(L.new_version_code))
. line_mapping = token2line_mapping(code_token_mapping)
: for block € line_mapping do
inter_labels, inline_labels = convert2label(
block.old.line_idz, block.new.line_idx);
L™ inter_labels.extend(inter_labels);
L™ .inline_labels.extend(inline_labels);
: end for
: ASSERT len(L™.inter_label) — 1 ==
len(L.old_version_code_lines)
11: return L*

SPPI auk

len(L*.inline_label) ==

into finer-grained edit semantics. While the git-diff format
captures the entire hunk as a single replace, TRACE derives
6 edit semantics, i.e., a delete change (i.e., delete line 3); a
replace change (i.e., replace line 4) and an insert change (i.e.,
insert between line 4, 5), etc. This granularity enables more
precise generalisation, improving both edit localisation and
generation (see the results in Section and Section [V-B).

Algorithm 1| shows how an edit hunk from git-diff format
is translated into our representation by aligning code lines
before (e.g. old line 3-6 in [Table TV) and after the edit
(e.g. new line 3-9). Since no 1dent1cal lines exist between
the two versions, direct line-level matching is infeasible.
In line 3, We use Tree-sitter [24] to tokenise
both versions into syntax elements with their types, code
text, and line indices. Longest Common Sub-sequence (LCS)
is applied to the token sequences to match elements that
remain unchanged, where a match is defined as having both
identical type and code text. Based on the line index of
matched elements, token2line_mapping(-) builds line-level
alignment. Hence in old line 3 maps to (), old line
4 to new line 3 and () to new lines 8, 9. We then assign
inline and inter-line labels according to each mapping block
via convert2label(-): matched lines in the old version are
labelled with <REPLACE>; lines in the old version that have
no counterpart are labelled <DELETE>; for unmatched lines
in the new version, the corresponding inter-line positions in
the old version are marked with <INSERT>. Additionally,
<BLOCK-SPLIT> functions as a separator between replace
blocks. The rest of the inter-line spaces are labelled with

<NULL>. returns hunk with enriched repre-

sentation.

B. Edit-composition Invocation

1) Predefined Edit Composition: We select five predefined
edit compositionsﬂ each is denoted as an edit set F,

« Variable Rename: Edits in the variable rename composi-
tion F,,, consistently modify all occurrences of the same
variable identifier across the codebase.

o Function Rename: Similarly, edits of this composition
E¢unc replace the same function identifier;

4These five composition types reflect basic capabilities widely supported
by mainstream LSPs and commonly observed in practice. More advanced
compositions depend on specific languages and LSP implementations.



TABLE IV: Enriched edit semantic labelling: The first column denotes inter-line labels, including N (NULL), I (INSERT),
and B (BLOCK-SPLIT). The second column denotes inline labels, including K (KEEP), R (REPLACE) and D (DELETE).

Enriched edit representation on hunk before edit Hunk after edit

N|

K 1 def extract_tags(reg_data): def extract_tags(req_data):
N|

K| 2 tags = [] tags = []
N|

hE req_tags = {k: v for k, v in req data.items() if k.

startswith (' Tags.member.’) }

N —

R 4= for i in range (int (len(reg_tags.keys()) / 2)): + for 1 in range(l, 200):
I 4+ k1='Tags.member.%s.Key’ %$i

| 5]+ k2='Tags.member.%s.Value’ $i

R 50— key = req tags[’Tags.member.’ + str(i + 1) + ’.Key’] 6+ key = reqg_data.get (k1)
B —

R 6|— value = req tags[’Tags.member.’ + str(i + 1) + ’.Value’] 7+ value = reqg_data.get (k2)
I 8|+ if key is None or value is None:

9|+ break

K tags.append ({’Key’: key, ’'Value’: value}) 10 tags.append ({’Key’: key, ’Value’: value})
N|

Kl . return tags 11 return tags
N|
o Def-Use Propagation: Edits to function signatures (e.g., { (VarRanams ) [[Func Rename | (Detause | [Core ) |

parameter addition or type change) affect both definitions . Probability of INVOGATION ---nnmnmmmmmmmv /

and usage sites, forming a def&use composition Fgefyse- r,,,,f ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
e Code Clone Update: Edits in code clone composition .. @ TOKEN | | TOKEN | | TOKEN | | TOKEN

share similar pre-edit code code, and post-edit code code,. @}Edltczzl:oiﬂrjnlnvoker ”””””””” '
« Code Diagnose Fix: Edits within diagnostic compositions f

E4;, propagate to each other via lint errors.

2) Learning Invocation: We design edit composition in-
voker as a multi-label classifier predicting whether the latest
prior edit fits any defined composition type. We exclude
prompt tuning as it is non-trivial for prompts to accurately
decide when and which edit composition to invoke across
hundreds of potential scenarios. Instead, we adopt an encoder
model, as shown in given prior edits E,, we divide
the edits into the latest edit and the rest of the prior edits,
feeding into the encoder. The encoder outputs a confidence
score for each type of edit composition in CLS position (see
[Figure 4)), where scores above a threshold indicate composition
membership. For each edit, we adopt XML tags including
<BEFORE> and <AFTER> as the instructions used for
model training. Here, we exclude the code diagnostics compo-
sition from the training dataset, as LSP implementations push
the diagnosis proactively upon document changes, without
requiring active invocation by the Invoker. To optimize this
prediction, we apply a binary cross-entropy loss over the multi-
label output, treating each composition type as an independent
label. For a single training instance with predicted logits {x;}
for composition ¢, and ground truth labels {y;}, the loss is

defined as shown in [Equation 1} here o(-) represents the

sigmoid function.

Lpce = — Z [yi log o(z;) + (1 — y;) log(1 — o (x;))] (1)

i

\
]
<LAST> i
Last prior edit <BEFORE> newChk.requiredRows = cap H
<AFTER> newChk.requiredRows = maxChunkSize H
. . </LAST> !

Rest prior edits |

'
<REST> ’ :
i
i
i
'
:
i
;

<BEFORE> return renewWithCapacity(chk, newCap)
<AFTER> return renewWithCapacity(chk, newCap, maxChunkSize)
</REST>

Fig. 4: Overview of edit-composition invoker

C. Edit Locator and Edit Generator

We adopt fine-tuning for both the edit locator and the gen-
erator: the encoder-only design localizes edits in a single pass
without costly decoding iterations, and fine-tuning allows the
enriched edit representation to be exploited more effectively
than prompt-based approaches.

1) Edit Locator: Given a code window from linegq+ to
linecnq, an optional edit description prompt, and selected
prior edits E/, the edit locator predicts the edit labels op spec-
ified in Section by adopting masked language modelling
(MLM) [235].

illustrates the details. For a code window, we place
<MASK> before each line of code and <INTER-MASK>
between lines. The goal of the neural locator is to recover the
two types of mask tokens. We use cleaned commit messages
as prompt during training. We append selected edits in F,, as
a way to incorporate prior edits. Edits are selected as the top-
ranked result based on textual similarity, using BM25 [26].
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Fig. 5: Neural locator overview: encoder trained to recover the
masked tokens. IM is inter-line mask, M is inline mask and
LoC denotes a line of code. N denotes <NULL>, K denotes
<KEEP>, R denotes <REPLACE>.
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Fig. 6: Overview of neural generator. Given predicted labels
like <REPLACE>, a transformer of encoder-decoder gener-
ates an edit solution. The code window, prompt, and prior edits

follow the same format as shown in

Edits in E, are formatted in enriched representation with the
post-edit code concatenated.

TRACE locator is optimized via Cross-Entropy loss on
<MASK> and <INTER-MASK> positions:

c
Lcg = — Z Y; log p; 2
i=1
As shown in C is the total number of classes (e.g.,
<KEEP>, <REPLACE>, <DELETE> for <MASK>, and
<NULL>, <INSERT>, <BLOCK-SPLIT> for <INTER-
MASK>), y; denotes the one-hot gold label for class i.

2) Edit Generator: As shown in the generator
input includes the code window code;, with edit labels op,
selected prior edits F/, and optional edit description prompt.
Each input window only contains one hunk to edit. The
generator, formulated as a sequence-to-sequence model [27]]
fine-tuned from an encoder-decoder architecture [7]], generates
k candidate edits using beam search [28]].

The generator is fine-tuned using Cross-Entropy loss on the

target post-edit code code,, as shown in [Equation 2| where C'
denotes the vocabulary size.

V. EXPERIMENT

We evaluate TRACE via the following research questions:

o RQ1 (Edit Location, Section [V-A): Can the edit locator
effectively identify editable lines and their types?

« RQ2 (Edit Generation, Section [V-B): Can the edit gener-
ator effectively generate the edit content?

« RQ3 (Ablation study, Section [V-C): Can the enriched edit
semantic representation effectively boost the performance of
the neural locator and generator?

TABLE V: Multilingual benchmark of TRACE on 678 repos-
itories and 5 programming languages.

. . #Locator  #Generator

Language  Dataset #Proj #Commit window Hunk
Train 66 5,703 72,807 36,114

Python Valid 23 815 10,066 5,096
Test 36 1,630 20,026 10,078

Train 80 4,919 66,705 32,594

Go Valid 21 707 9,414 4,636
Test 64 1,405 18,457 9,206

Train 59 9,480 135,196 67,714

Java Valid 8 1,354 18,813 9,611
Test 40 2,705 38,777 19,578

Train 77 1,826 21,724 11,022

Javascript Valid 14 264 3,233 1,706
Test 33 520 5,989 3,105

Train 108 5,116 64,766 33,054

Typescript Valid 26 734 4,743 9,416
Test 34 1,469 18,360 9,397
Train 390 27,044 361,198 180,498

Total Valid 92 3,874 50,942 25,792
Test 207 7,729 101,609 51,364

« RQ4 (Edit-Composition Invocation, Section [V-D): Can
the edit-composition invoker be triggered accurately?

« RQ5 (Real-world Simulation, Section [V-E): What is the
performance of TRACE in a real-life editing environment?
Given the space limit, qualitative analysis and the visualized

simulation process are available at [[19].

Experiment Setup: We construct a multilingual benchmark
of 5 programming languages (Python, Go, Java, JavaScript,
and TypeScript). We use an open-source LLM (e.g., Llama-
3-8B-Instruct [29]], see our anonymous site [19] for prompt
design) to filter out commits with vague or multi-intent
messages (e.g., adding new features while fixing unrelated
bugs), as such content hinders learning the semantic link
between language and edits. Commit messages are typically
abbreviated and often contain irrelevant noise such as PR
numbers, repeated messages or committer information, leading
to a distribution shift from real-life edit descriptions. To
address this, we refined retained messages for clarity (e.g.,
removing pull request IDs or committer emails). Our manual
evaluation shows that the refined messages are more natural
and concise, and LLaMA3 performs well in this task by
effectively removing noise and rewriting messages into fluent
descriptions.

The resulting benchmark comprises 678 top-starred repos-
itories and a final set of 38k commits, statistics are shown
in Based on the benchmark, we translate the data
format for training different models to predict specific training
tasks such as composition invoking, edit location, and edit
generation. We adopt cross-project splits, with training and
test sets from disjoint projects to prevent data leakage.

A. RQI (Edit location)

Benchmark: To train and evaluate the neural locator, we
collected 101,609 sliding code windows from the general
benchmark, each is paired with up to three relevant hunks.
To avoid data leakage, hunks that overlap with the target
code window are excluded. To better align with real-world



TABLE VI: RQI: Edit location performance: TRACE uses
enriched semantics; baselines use plain representations.

TABLE VII: RQ2: static generation performance: TRACE uses
enriched semantics; baselines use plain representations.

Acc. (%) Prec. (%) Rec. (%) Fl1 (%) Model Metric @1 @3 @5 @10

TRACE Locator 93.48 69.61 67.89 68.71 TRACE generator EMR  48.02 5344 55.04 57.05

CoEdPilot Locator 83.97 48.42 61.75 51.91 & BLEU 69.68 73.55 7473 76.10

Code Clone Detector 82.15 40.47 44.14 41.38 CoEdPilot " EMR 4320 4892 50.61 52.70

ORCTTIOL BeNetdiol BLEU 6490 69.64  70.94 7248
GrACE EMR 39.54 4630 4845 50.88
deployment scenarios, a single code window may contain mul- BLEU 61.89 6847 7033 7236
tiple edit hunks. All models, including baselines and TRACE, CCTS EMR 3976 4576 47.77 5145
. . . BLEU 6291 67.88 69.43 7243
take the same input: a code window, an optional prompt, and
selected prior edits. The output is a label sequence. TABLE VIII: RQ3: Ablation study.
Metric: We ev.alluate predicted labels using accuracy, macro- Tocator Generator
averaged precision, recall, and Fl-score. Macro averaging Model ~“Acc. Prec. Rec. FI
. . . . @] @3 @5 @10

equally weights all classes, ignoring the class imbalance. (%) () (%) (%)

Baseline: TRACE locator is compared with the state-of-the-art
CoEdPilot locator and naive code clone detectOIE] [130].

All neural models adopt the Salesforce/codet5-
large [31], [3] encoder, fine-tuned on our dataset. This
experiment precludes LSP, as it requires the simulation of
the entire project. The detailed evaluation for TRACE with
external tools equipped is in Section
Result: shows the locator’s static performance with
enriched semantics, achieving 69.61% precision and 68.71%
F1 in locating edit lines. The strength of our enriched semantic
locator lies in high-precision edit identification, achieving a
43.76% improvement over the best baseline. Meanwhile, the
code clone detector performs well mainly for copy-paste edits,
but its overall effectiveness is limited.

B. RQ2 (Edit generation)

Benchmark: Similar to the neural locator, we collected
51,364 test hunks from the general benchmark, each paired
with 3 other hunks from the same commit. All generators
share the same input, i.e., a code window with edit labels,
an optional prompt, and selected prior edits. The target output
is the post-edit code for the hunk within the window.
Metric: We generate 10 candidates per sample, ranked by
confidence, and evaluate performance at Top-1, 3, 5, and 10
using exact match rate (EMR) and BLEU-4 [32]. EMR is the
percentage of samples with an exact match in the Top-k, while
BLEU-4 takes the highest score among them.

Baseline: We compare our enriched edit semantic genera-
tor with 3 state-of-the-art edit generators: CoEdPilot [14],
GrACE [8] and CCTS5 [9]. All models adopt Salesforce/
codet5-base as the base model and are fine-tuned on our
dataset.

Result: shows the static generation performance
of edit generation with Top-10 candidates. Our generator
with enriched edit semantics achieves the best performance
in generating edit options: the Top-1 candidate has an exact
match rate of 48.02%, yielding a notable boost of 11.16%
compared with the state-of-the-art generator models. In the
Top-10 options, an exact match can be found in more than
57% of the cases, suggesting potential gains in user efficiency.

5The code clone detector is included based on the observation that devel-
opers often locate relevant code by searching for similar code snippets.

EMR 48.02 53.44 55.04 57.05
BLEU 69.68 73.55 74.73 76.10
EMR 44.71 50.08 51.70 53.61
BLEU 65.82 70.14 71.41 72.81

Enriched 93.48 69.61 67.89 68.71

Plain  90.78 60.76 72.68 65.41

C. RQ3 (Ablation study)

Benchmark: We evaluate the edit locator and generator using
benchmarks from Sections and

Metric: Same metrics as in Section [V-A] and Section
Baseline: We compare our enriched edit semantic representa-
tion with the 3-label one by fine-tuning models of the same
size on the same dataset, differing only in representation.
Result: As shown in [Table VIIIl our enriched edit semantics
achieve 69.61% precision, a 14.57% improvement over the
plain representation. We observed that the plain semantics
locator achieves slightly higher recall, likely due to having
fewer labels, which simplifies classification with coarser de-
cision boundaries and fewer misclassifications. However, for
edit location recommendation, we prioritize precision over
recall, as developers benefit more from accurate suggestions
than from broader but less precise coverage. It is noteworthy
that enriched semantics improve generator performance by
7.40% over plain semantics, mainly by offering clearer edit
instructions for target code windows.

D. RQ4 (Edit-composition invocation)

In this experiment, we leverage the facilities of LSPs [33]],
[34], [35], [36] as the IDE edit composition.
Benchmark: Given a commit of N edit hunks, we randomly
select one target hunk H,; and up to 2 background hunks Hp;,
Hyo. We configure the project state such that Hy, Hyy, Hys are
applied (post-edited) while the remaining N — 3 hunks remain
unapplied (pre-edited), simulating a partial commit completion
scenario. We invoke LSP services (rename, find reference, find
clone) at H,’s location. If the service returns edit locations
matching any of the remaining N — 3 unedited hunks (de-
termined by line index overlap), we label this as a positive
sample with H;, Hy;, Hyo as input and the corresponding LSP
service type as output. The dataset contains 8,534 training,
1,294 validation, and 2,499 test samples.
Metrics: We use macro-averaged precision, recall, and F1-
score to assess the edit composition invocation performance.



TABLE IX: RQ4: The performance of Invoker.

Precision (%) Reccall (%) F1 (%)

Variable Rename 91.15 98.59 94.72

Edit-Composition Function Rename 98.71 97.44 98.07
Invoker Def & use 84.06 87.90 85.94
Clone 95.88 94.59 95.23

Average 92.45 94.63 93.49

Blindly invoking 22.01 100.00 35.50
Randomly invoking 21.85 50.26 29.71

Baseline: We compare our method against two baselines:
blindly invoking all LSP services, and randomly invoking one.
Result: shows the performance of the edit-
composition invoker, which achieves an F1 score of 93.49%,
substantially outperforming both blindly and randomly invok-
ing LSP functions. The results indicate that the edit composi-
tion can be effectively invoked.

E. RQS5 (Real-world simulation)

Benchmark: 500 commits (100 for each language) are ran-
domly selected from the test set in the general benchmark,
comprising a total of 3,211 edit hunks.

Simulation process: Compared with the previous two research
questions (Section and Section [V-B)), real-world editing
scenarios are much more challenging, because: (1) the majority
of the code remains unchanged (2) with fewer prior edits
available; and (3) the impact of a single edit is limited—it
rarely propagates to all edits within a commit and, in some
cases, does not propagate at all. Hence, to comprehensively
evaluate the actual performance in a real-world editing sce-
nario, we simulate the process of a programmer making
a commit by editing each hunk until the old version is
transformed into the new version. We define the simulation
process as 4 stages. 1) Initialization: For a given commit,
we check out the project to its pre-commit version and use
git diff to identify all edit hunks. The first hunk listed by
git diff is designated as the initial edit, which is applied to
obtain the starting project state. 2) Location prediction and
selection: The process then iterates over the remaining edits.
At each step, the locator model predicts candidate locations
for the next edit based on the commit message and prior edits.
Candidates are ranked by confidence scores, either produced
by the model or set to a default value of 1.0 for locations
obtained via LSP services. A predicted location is considered
a match to a ground-truth edit if it has more than 50% line
overlap with the ground-truth hunk. If a match is found, it
is passed to the generator; otherwise, the virtual programmer
randomly selects one remaining ground-truth location. 3) Edit
generation and application: Given the selected location, the
generator produces 10 candidate edits, which are compared
with the ground truth. The virtual programmer applies the
ground-truth edit content at the selected location to the project
before proceeding. This quality control mechanism prevents
the simulation from continuing from erroneous states, emulat-
ing human oversight in interactive editing. 4) Iteration: Steps
2 and 3 repeat until all edits in the commit are simulated and
applied. A video of this simulation process is available at [[19]].

TABLE X: RQ5: Real-world edit simulation performance.

Locating Generation

Match - BLEU-4
Model rate (%) TE“)“" distribution (%)
@1 @3 @5 % [100 507100 < 50
TRACE 35.18 42.07 44.24 3.27 |49.23 24.32 2645
TRACE w/o Invoker 32.52 39.80 42.23 347 |49.23 24.52 26.25

Enriched semantic ~ 32.56 40.71 43.39 3.82 |49.23 24.52 26.25

Plain semantic 31.05 36.35 37.57 3.81 (45.41 23.67 30.92
CoEdPilot 11.47 24.41 29.25 3.80 [43.17 23.81 33.02
CCD 15.99 15.99 15.99 2e-4 |45.35 23.62 31.03

Metric: For localization, we report the Top-K match rate
(MR @K) and the time cost. MR@K denotes the percentage
of predictions with at least one correct location in the Top-
K. Time cost reflects the average latency of location pre-
diction. Both metrics are affected by Invoker and Locator
performance; component failures lead to lower MR@K and
higher time costs. For generation, we analyze the BLEU-4
score distribution in three bands: 100 (directly usable for
user), 50-100 (minor edits needed), and <50 (likely rejected).
BLEU-4 scores are affected by both Invoker and Generator;
component failures lead to score drops. Acceptance rate @K
denotes the percentage of Top-K suggestions containing at
least one match with the gold location and a BLEU-4 of 100,
which is affected by all three components.

Baselines: TRACE composes a locator and a generator with
enriched edit semantics, integrated with LSP [33], [34], [35],
[36] and Invoker. We compare TRACE to baselines:

1) TRACE w/o Invoker: TRACE without Invoker, blindly
invoking LSP services;

2) Enriched semantic: Neural locator and generator, both
with the enriched edit semantics (6-label representation);

3) Plain semantic: Neural locator and generator, both of plain
edit semantics (3-label representation);

4) CoEdPilot: Locator and generator from CoEdPilot, models
re-trained on the same dataset and architecture as TRACE;

5) CCD: Code clone detector as locator and neural generator
of plain edit semantics.

6) Cursor: Since Cursor of version 0.46 lacks APIs for
large-scale simulation, to simulate a commit, each time
we manually apply an edit to the project. If this edit
triggers Cursor’s Tab recommendation, we follow the single
suggested edit and mark it as Top-1. Otherwise, we input
the prior edit and edit description into the Cursor Chat,
which provides multiple edit suggestions. We rank all
suggestions by their proximity to the last applied edit and
evaluate whether the ground truth appears in the Top-K
ranked recommendations.

Result: shows the performance in the simulation. Our
TRACE outperforms all baselines in locating performance,
with over 35% of cases yielding a useful recommendation at
the Top-1 location. Compared to the state-of-the-art CoEdPilot,
TRACE achieves a notable 206.71% improvement in MR@1.
Integrating LSP and Invoker improves MK@1 performance
by over 8.05% over pure neural solutions, and cuts locating
time by 14.40%. Meanwhile, blindly invoking the LSP service



TABLE XI: RQS5: Acceptance rate in real-world simulation.

Acceptance rate (%)
Model @l @3 @5
TRACE 2571 28.54 29.55
TRACE w/o Invoker | 24.70 27.73 28.74
Enriched 2449 27773 2895
Plain 2146 2591 26.52
CoEdPilot 8.30 17.81 20.65
CCD 12.96 1296  12.96
Cursor 2422  26.19 27.20

is prone to introducing false positive edits, reducing perfor-
mance to that of neural-only solutions. The enriched semantic
approach shows a 15.49% improvement in MR@5 over plain
semantic and a 47.83% improvement over CoEdPilot, confirm-
ing the effectiveness of our enriched edit representation as an
additional component alongside Edit-composition Invoker and
LSP. Note that the code clone detector has the same MR@K,
as it cannot rank results and marks all as Top-1. Although code
clone detection excels in time efficiency, its recommendation
quality remains insufficient for practical use. We also observed
a time discrepancy between CoEdPilot and its original work.
The higher time cost arises as the locator scans more sliding
windows (n) per query and selects from m prior edits per
window via a neural network, adding O(mn) time complexity.

For the generator, our enriched semantic model generates
helpful edit solutions (BLEU-4>50) in over 73% of the cases,
with around 50% of them achieving BLEU-4=100. Compared
to the state-of-the-art CoEdPilot, TRACE achieves a perfor-
mance boost of 14.04% in terms of high-quality suggestion
(BLEU-4=100) and a 19.90% drop in low-quality suggestion
(BLEU-4<50). Compared to plain semantic and the state-of-
the-art CoEdPilot, TRACE achieves 8.41% and 14.04% im-
provements respectively in high-quality suggestions (BLEU-
4=100), while reducing low-quality suggestions (BLEU-4<50)
by 16.89% and 19.90% respectively, confirming the effective-
ness of the TRACE generator and enriched edit representation.

shows the acceptance rate of baselines, where
TRACE is on par with Cursor while achieving a 6% im-
provement. Cursor’s Tab feature offers fast and accurate
suggestions but triggers conservatively, while its Chat interface
struggles to locate cross-file edits proactively. As a result, only
8.82% of accepted edits are cross-file. In contrast, TRACE
leverages LSP integration to support efficient cross-file local-
ization, with 38.46% of accepted edits being cross-file edits.

VI. USER STUDY

To validate TRACE in real-world use, we implement
TRACE as a VS Code extension and design this user study.
Video recordings and user interaction data are provided at our
homepage [19].

Baseline: We compare TRACE with: (1) CoEdPilot as the
state-of-the-art subsequent edit suggestion system, and (2)
Cursor [12] (version 0.46), a popular Al-powered IDE. During
evaluation, we impose no restrictions on Cursor’s functionality,
and all tools can access IDE LSP services to ensure fairness.
Participant: We recruit 24 Computer Science students from
three universities in both China and Singapore. All participants

TABLE XII: Performance of EG (TRACE), CG1 (CoEdPilot)
and CG2 (Cursor), the time cost in minutes.

EG T1 T2 T3|CG1 T1 T2 T3 |[CG2 T1 T2 T3
P1 332 7.18 8.78| P9 3.55 8.42 15.60| P17 15.68 11.25 4.87
P2 522 578 5.15| P10 3.58 13.03 10.03| P18 15.87 19.28 3.42
P3 3.83 13.37 3.50| P11 6.62 13.12 9.60 | P19 17.10 18.20 4.83
P4 3.13 877 4.47| P12 7.90 13.07 6.70 | P20 17.82 14.55 3.05
P5 352 11.18 4.68| P13 4.25 12.55 7.83 | P21 17.08 20.12 2.98
P6 292 11.00 5.62| P14 3.92 11.72 5.52 | P22 13.68 30.00 2.82
P7 4.73 852 3.67| P15 5.18 16.38 4.57 | P23 16.98 12.03 2.93
P8 2.97 11.37 3.20| P16 8.65 18.08 18.32| P24 14.63 7.30 3.10
Avg. 3.70 9.65 4.88|Avg. 5.46 13.30 9.77 | Avg. 16.11 16.59 3.50

completed a pre-study questionnaire on their experience with
programming and Al-assisted tools. See our website for more
demographic details [[19]. Participants are stratified into three
balanced groups based on their self-reported programming
proficiency and Al tool experience, to ensure comparable
skill levels across groups. The experimental group (EG) uses

TRACE, while control group 1 (CG1) uses CoEdPilot and

control group 2 (CG2) uses Cursor.

Editing task: Participants are asked to reproduce edits from

3 real-world GitHub commits, each under a 30-minute time

budget. Selected tasks represent common editing scenarios,

with all necessary domain knowledge provided, ensuring com-
pletion by participants with general programming experience.

Performance is measured by task completion and time.

o Task 1: Refactor the if condition from if "http" in
XX to 1f XX.startswith ("http") to improve the
robustness of string matching [37]], requiring 8 edits across
5 files;

e Task 2: Add a train_data_size flag to the BERT
data pipeline, allowing users to limit training samples and
triggering changes along the call chain [38], requiring 9 edits
across 2 files along the call chain;

o Task 3: Add the noise_shape and seed arguments to
the Dropout layer API in Keras, enhancing control over the
dropout mask shape and randomness seed [39]], requiring 5
edits in a single file.

Setup: Participants first complete a warm-up tutorial to famil-

iarize themselves with the assigned tool. For each task, they

receive 1) the project code, 2) background knowledge like code

functionality and API usage, 3) a detailed edit description, 4)

the first edit as a hint, and 5) test cases for validating edits via

execution. The initial edit for each task is selected to provide
context and guide subsequent edits: for Task 1, any edit can be
randomly chosen due to the uniform editing pattern; for Task

2, the call chain entry point; and for Task 3, the documentation

for new arguments.. Screens are recorded for analysis.

Metric: We evaluate user study via three metrics: average time

cost for user efficiency, Wilcoxon Signed Rank Test p-values

for statistical significance between groups (p < 0.05 denotes
significance), and Effect Size (r) to quantify the difference
magnitude (r > 0.5 denotes a large effect).

Result: Participants’ performance in completing 3 editing

tasks is shown in with the following observations:

1) Task 1: EG outperforms both CG1 (p = 0.0781,r = 0.62)

and CG2 (p = 0.0078,r = 0.94, statistically significant);



2) Task 2: EG significantly outperforms both CGl (p =
0.0156,r = 0.85) and CG2 (p = 0.0234,r = 0.80);

3) Task 3: CG2 significantly outperforms both EG (p =
0.0390,r = 0.72) and CG1 (p = 0.0078,r = 0.94).

To analyze user performance, we first instrumented the
extension to monitor user actions in real-time, tracking LSP
trigger events from user edits and recording user responses
to recommendations (accept, reject, or modify). Second, we
manually analyzed video recordings with three researchers,
focusing on sessions with notably fast/slow task completion
times, plus randomly selected sessions with typical completion
times. Analysis examined user responses to edit recommenda-
tions and behaviors during test failures, with cross-validation
among researchers. Based on this analysis, we provide the
following explanations:

Why do TRACE and CoEdPilot outperform Cursor in
Task 1? Both TRACE (EG) and CoEdPilot (CG1) support
project-wide edit localization across files. TRACE further
leverages LSP-based clone detection for efficient cross-file
propagation. In contrast, Cursor (CG2) relies on users to
specify files, which is time-consuming when relevant files are
unknown to users. Additionally, Multi-file rewriting in Cursor
is slow and disruptive to mental flow.

Why do TRACE outperforms both CoEdPilot and Cursor
in Task 2? Task 2 involves 9 edits across 2 files, which are
distant but syntactically coherent. Still taking advantage of tool
deduction, TRACE can identify the subsequent edit location
via the LSP service, avoiding the exhaustive file scanning,
as in CoEdPilot. In contrast, Cursor users struggle due to its
reliance on full-file rewriting and limited cross-file localization
ability. For example, user P22 manually searched across files
but ended up in the wrong one and exhausted the time budget.
Why does Cursor outperform TRACE and CoEdPilot in
Task 3? Given the shared context among 5 edits, Cursor allows
users to quickly trigger the next edit recommendation via Tab,
or generate all correct edits in a single rewrite via Chat, which
significantly improves editing efficiency. Despite lacking edit
compositions in this task, TRACE still outperforms CoEdPilot
by fewer false positive suggestions with its improved predict-
ing performance.

How do users respond to false positives (over-trust phe-
nomenon)? Video analysis reveals an over-trust phenomenon
in nearly all users, regardless of their Al tool or programming
experience. During warm-up, over 92% of participants quickly
gained confidence after a few correct predictions, leading
to less caution in accepting recommendations. When test
cases failed, users took considerable time to revisit prior
decisions, damaging performance. We believe that improving
human-computer interaction (e.g., intuitive undo/review) and
explainable Al (e.g., rationale behind suggestions) is more
crucial than further boosting model accuracy, and we plan to
explore this direction.

VII. RELATED WORK

Edit Localization identifies editable regions based on prior
edits, yet most works focus on fault localization. Spectrum-

based (SBFL) [40], [41], [42] and mutation-based (MBFL)
[43], [44] methods localize faults via test outcomes or code
mutations. Neural models like Toggle [45] and LLMAO [46]]
apply attention or transformers to rank suspicious code. Gen-
eral edit localization is more challenging and underexplored,
often relying on static tools. LASE [47]] uses heuristics to
extract edit patterns; CCDemon [48]] leverages clone detection.
However, these methods capture limited propagation types
with low precision and provide no actionable instructions.

Code Edit Generation: LLMs are widely applied in soft-
ware engineering for code [49]], [50], comment [S1]] and test
generation [S52f], [S3[], [54], [55M, [S6l, [S7]. Among these,
code edit generation is especially demanded [58], aiming
to suggest edits for a given snippet. Codit [59] proposed a
tree-based model; Recoder [60] fused code, AST, and paths.
CURE [61], CoditT5 [10], and CCT5 [9]] introduced edit-
oriented pre-training. Overwatch [62] modeled temporal edit
sequences, while GrACE [8] encodes both target and prior
edits in prompts. Our model further leverages enriched edit
semantics for finer control and efficient learning from prior
edits.

Tool Invocation: Recent advances have integrated static
analysis tools for coding tasks. Pei et al. [63] adopted LSP
to retrieve function signatures for function call infilling. Con-
textModule [64] and Blinn et al. [65] extended this approach
for more general code completion task. Recent studies [66],
[67], [68] also combine LLMs with static analysis to improve
code quality, including fixing vulnerabilities and readability
issues. However, these approaches do not directly support
interactive code editing or predict subsequent edit locations.
For editing tasks, CodePlan [69]] employs dependency graphs
and LLM-based planning for repository-level tasks, while
MarsCode Agent [70] introduces multi-agent collaboration
with LSP services and code knowledge graphs for bug fixing.
These works differ from TRACE in several key aspects: they
are all agentic solutions focused on solving SWE-bench-like
tasks [23], where, given a project, editing requirements, and
tests, they automatically complete edits to make the modified
project pass the tests. Compared to TRACE’s task, this type
of task has lower latency requirements. Additionally, although
they all utilize static tools, they serve merely as retrieval
mechanisms to provide additional context rather than for
edit localization. Moreover, MarsCode Agent’s use of LSP
functionality is relatively limited.

VIII. CONCLUSIONS

This paper introduces TRACE, a subsequent code editing
solution that effectively captures the coherence of project-
wide code edits. TRACE proposes Invoker, which integrates
LSP to capture edit composition and introduces enriched edit
semantics for more accurate representation. In our experiment,
TRACE significantly improves edit localization and generation
while demonstrating high performance in interactive editing
settings, establishing itself as a new state-of-the-art solution
for the end-to-end code editing task.
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