
CoEdPilot: Recommending Code Edits with Learned Prior Edit
Relevance, Project-wise Awareness, and Interactive Nature

Chenyan Liu∗
Shanghai Jiao Tong University

Shanghai, China
National University of Singapore

Singapore, Singapore
chenyan@u.nus.edu

Yufan Cai∗
Shanghai Jiao Tong University

Shanghai, China
National University of Singapore

Singapore, Singapore
cai_yufan@u.nus.edu

Yun Lin†
Shanghai Jiao Tong University

Shanghai, China
lin_yun@sjtu.edu.cn

Yuhuan Huang
Shanghai Jiao Tong University

Shanghai, China
hyh0u0@sjtu.edu.cn

Yunrui Pei
Shanghai Jiao Tong University

Shanghai, China
yunruipei@sjtu.edu.cn

Bo Jiang
Bytedance Network Technology

Beijing, China
jiangbo.jacob@bytedance.com

Ping Yang
Bytedance Network Technology

Beijing, China
yangping.cser@bytedance.com

Jin Song Dong
National University of Singapore

Singapore, Singapore
dcsdjs@nus.edu.sg

Hong Mei
Shanghai Jiao Tong University

Shanghai, China
meih@pku.edu.cn

Abstract
Recent years have seen the development of LLM-based code gen-
eration. Compared to generating code in a software project, incre-
mental code edits are empirically observed to be more frequent.
The emerging code editing approaches usually formulate the prob-
lem as generating an edit based on known relevant prior edits and
context. However, practical code edits can be more complicated.
First, an editing session can include multiple (ir)relevant edits to
the code under edit. Second, the inference of the subsequent edits is
non-trivial as the scope of its ripple effect can be the whole project.

In this work, we propose CoEdPilot, an LLM-driven solution
to recommend code edits by discriminating the relevant edits, ex-
ploring their interactive natures, and estimating its ripple effect
in the project. Specifically, CoEdPilot orchestrates multiple neural
transformers to identify what and how to edit in the project regard-
ing both edit location and edit content. When a user accomplishes
an edit with an optional editing description, an Subsequent Edit
Analysis first reports the most relevant files in the project with
what types of edits (e.g., keep, insert, and replace) can happen for
each line of their code. Next, an Edit-content Generator generates
concrete edit options for the lines of code, regarding its relevant
prior changes reported by an Edit-dependency Analyzer . Last, both
the Subsequent Edit Analysis and the Edit-content Generator capture

∗Both authors contributed equally to the paper
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3652142

relevant prior edits as feedback to readjust their recommendations.
We train our models by collecting over 180K commits from 471
open-source projects in 5 programming languages. Our extensive
experiments show that (1) CoEdPilot can well predict the edits (i.e.,
predicting edit location with accuracy of 70.8%-85.3%, and the edit
content with exact match rate of 41.8% and BLEU4 score of 60.7); (2)
CoEdPilot can well boost existing edit generators such as GRACE
and CCT5 on exact match rate by 8.57% points and BLEU4 score by
18.08. Last, our user study on 18 participants with 3 editing tasks
(1) shows that CoEdPilot can be effective in assisting users to edit
code in comparison with Copilot, and (2) sheds light on the future
improvement of the tool design. The video demonstration of our
tool is available at https://sites.google.com/view/coedpilot/home.

CCS Concepts
• Software and its engineering→ Automatic programming;
Software evolution.

Keywords
code edit generation, edit location, interaction, language model

ACM Reference Format:
Chenyan Liu, Yufan Cai, Yun Lin, Yuhuan Huang, Yunrui Pei, Bo Jiang,
Ping Yang, Jin Song Dong, and Hong Mei. 2024. CoEdPilot: Recommending
Code Edits with Learned Prior Edit Relevance, Project-wise Awareness, and
Interactive Nature. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’24), September 16–20,
2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3650212.3652142

1 Introduction
Recent years have seen the success of the application of LM (Lan-
guage Model) in code generation tasks. LM-based approaches, such
as CodeBERT [19], GraphCodeBERT [24], CodeT5 [54], Copilot
[23], and ChatGPT [44], dominate the code generation solutions by

https://orcid.org/0009-0005-0554-4028
https://orcid.org/0009-0008-7579-0824
https://orcid.org/0000-0001-8255-0118
https://orcid.org/0009-0001-9809-6658
https://orcid.org/0009-0000-5624-0853
https://orcid.org/0009-0000-1080-3278
https://orcid.org/0009-0003-9862-6983
https://orcid.org/0000-0002-6512-8326
https://orcid.org/0000-0003-2380-3976
https://doi.org/10.1145/3650212.3652142
https://sites.google.com/view/coedpilot/home
https://doi.org/10.1145/3650212.3652142
https://doi.org/10.1145/3650212.3652142

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenyan Liu, Yufan Cai, Yun Lin, Yuhuan Huang, Yunrui Pei, Bo Jiang, Ping Yang, Jin Song Dong, and Hong Mei

Prior Edit Prior EditContext Context Code To EditContext…

Transformer (with Encoder and Decoder)

Edited Code

Description

Assumption 1: Known
Relevant Prior Edit

Assumption 2: Known
Subsequent Edit Location

Figure 1: State-of-the-art Code Editing Framework [15] [25]
[33]. The dotted rectangles represent the code before and
after the recommended edits.

translating users’ description and surrounding code context to new
code. Nevertheless, compared to generating new code, empirical ob-
servation shows that the activities of editing existing code happen
more frequently [31, 32, 40]. Empirical study on the commits in a
large number of open-source projects shows that editing behaviors
take about 70% in the commit history [41].

Many transformer-based approaches are proposed to generalize
the code generation solutions to code editing solutions, such as
GRACE [25], CCT5 [37], CoditT5 [58], and MODIT [15]. While
those approaches are different in representing the edits in deep
learning models, they formulate the edit generation problem as a
translation problem by (1) taking the input as known relevant prior
edits (and their context) and code region (and their context) where
the change is known to happen and (2) generating the output as
a piece of edited code. We show a model architecture as Figure 1
to capture the general idea of the state-of-the-art solutions, where
optional edit description, prior edits and their optional context, and
the code under the edit are fed to a language model to output a
piece of edited code.

While those solutions have laid an important foundation for
code editing tasks, there is still a gap between the solutions and the
practical scenarios.
• Assumption of Relevance of Prior Edits. In an editing session,
existing work usually assumes that all the prior edits of a target
edit are relevant. However, it might not be true in practice (see
Section 2 for more details). Feeding the model with irrelevant
prior edits can introduce noisy input, compromising the accuracy
of the generated edits.

• Assumption of Availability of Subsequent Edit Location.
In addition, it is also non-trivial to know where the edits can
happen because the ripple effect of a prior edit may propagate
across the whole project [50].

• Interactive Nature between Multiple Edits. Lastly, code edits
can interact with each other regarding their syntactic dependency
and semantic relevance. However, existing transformers still lack
of design to capture such interaction.
In this work, we propose, CoEdPilot, an LM-based solution to

address the above concerns. We designed CoEdPilot to monitor the
ripple effect of an edit as to where the subsequent edits can happen,
infer the most relevant prior edits, and capture the edit interaction
more explicitly. To this end, we design CoEdPilot by orchestrating a
set of neural transformers [52] to coherently work with each other.
Once an edit-triggering event happens (e.g., an edit 𝑒 happens with

an optional edit description 𝑝𝑟𝑝), the following components are
activated in an order:

• Two-staged edit location: In the first stage, we scan the whole
project with an Edit-propagating File Locator , which reports a
set of files F where the changes can happen in a coarse-grained
way. In the second stage, with the reported files F , we apply
a sliding window on those files with our Edit-propagating Line
Locator to report the type of edit (e.g., keep, insert, and replace)
for each line of code in the files. As a result, we can have a set
of lines of code with labelled type of edit, denoted as L𝑒 = {𝑙𝑒 =

(𝑙, 𝑡) |𝑙 ∈ L, 𝑡 ∈ {insert, replace}}, where L is the set of lines of
code in the project. L𝑒 includes all the lines of code predicted to
be inserted with or replaced with new content.

• Edit content generation: With the reported editing locations L𝑡 ,
we use our trained Edit-content Generator to further generate
the edit content for each location with prediction 𝑒𝑡 = (𝑙, 𝑡), re-
garding the editing description 𝑝𝑟𝑝 and a set of selected relevant
prior edits. Specifically, we select a set of relevant prior edits
P = {𝑒 = (𝑙, 𝑡, 𝑐𝑎, 𝑐𝑏)} to generate a list of edit options, where
𝑙 indicates the editing line of code, 𝑡 indicates the edit type, 𝑐𝑎
indicates the code content after the edit, and 𝑐𝑏 indicates the code
content before the edit. Note that, 𝑐𝑎 and 𝑐𝑏 further incorporate
user feedback on the code under the edit, allowing us to adapt
the user’s intention on-the-fly in the editing session.

• Edit-dependency analyzer: For selecting the relevant prior edits,
we train an Edit-dependency Analyzer to parse all the prior edits
and select the most syntactically and semantically relevant ones
for generating the target edit.

Once a new edit 𝑒′ is accepted, it serves as a new edit-triggering
event to activate the above procedures.

We train our neural models from the collected over 180K commits
from 471 open source projects in 5 programming languages. We
evaluate our models with extensive experiments. Our extensive
experiment shows that (1) CoEdPilot can identify edit locations with
an accuracy of 70.8-85.3%; and (2) for each identified edit location,
CoEdPilot achieves the exactmatch rate of 41.8% and the BLEU score
of 60.7 for the top-1 recommendation. Our ablation study shows
that CoEdPilot, as a code-editing framework, can improve the exact
match rate and BLEU score of state-of-the-art edit generators such
as GRACE and CoditT5 by on average 8.57% and 18.08 respectively.
Further, our user study on 18 participants with 3 editing tasks on
feature enhancement, refactoring, and bug fixing shows that (1) in
comparison to our baseline Copilot, CoEdPilot can be effective in
assisting users to edit code by its advantage on the project-wise
awareness and the capture of the interaction between relevant edits,
and (2) sheds light on the future improvement of the tool design
such as distribution-shifting edits from the training dataset.

Overall, we summarize our contributions as follows:

• We propose CoEdPilot, an LM-driven solution to make the state-
of-the-art edit generationmodels more practical by predicting the
relevant prior edits, subsequent edit location, and the interactive
nature between the edits.

• We design CoEdPilot as a modularized framework, which allows
us to plug into any edit-content generators in the community.

CoEdPilot: Recommending Code Edits with Learned Prior Edit Relevance, Project-wise Awareness, and Interactive Nature ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: The code edits in src/testing/benchmark.go
Hunk Before Edit After Edit
H1 (insert) type benchContext struct {

maxLen int // The largest recorded benchmark name.

}

type benchContext struct {

match *matcher

maxLen int // The largest recorded benchmark name.

}

H2 (insert) func runBenchmarksInternal(...) bool {

// ... other code ...

ctx := &benchContext{

extLen: len(benchmarkName("", maxprocs)),

}

// ... other code ...

}

func runBenchmarksInternal(...) bool {

// ... other code ...

ctx := &benchContext{

match: newMatcher(matchString, *matchBenchmarks, "-
test.bench"),

extLen: len(benchmarkName("", maxprocs)),

}

// ... other code ...

}

H3 (replace) func (b *B) runBench(...) bool {

// ... other code ...

if b.level > 0 {
name = b.name + "/" + name

}

// ... other code ...

}

func (b *B) runBench(...) bool {

// ... other code ...

benchName, ok := b.name, true
if b.context != nil {
benchName, ok = b.context.match.fullName(&b.common,
name)

}
if !ok {
return true

}

// ... other code ...

}

Table 2: The code edits in src/testing/testing.go
Hunk Before Edit After Edit
H4 (insert) type testContext struct {

mu sync.Mutex

// ... other code ...

}

type testContext struct {

match *matcher

mu sync.Mutex

// ... other code ...

}

H5 (replace) func (t *T) run(...) bool {

testName := name
if t.level > 0 {
testName = t.name + "/" + name

}

// ... other code ...

}

func (t *T) run(...) bool {

testName, ok := t.context.match.fullName(&t.common,
name)

if !ok {
return true

}

// ... other code ...

}

H6 (replace) func newTestContext(maxParallel int) *testContext {
return &testContext{

startParallel: make(chan bool),

maxParallel: maxParallel,

running: 1, // Set the count to 1 for the main

(sequential) test.

}

}

func newTestContext(maxParallel int, m *matcher) *
testContext {

return &testContext{

match: m,
startParallel: make(chan bool),

maxParallel: maxParallel,

running: 1, // Set the count to 1 for the main

(sequential) test.

}

}

• We implement an open-source CoEdPilot as a VS Code plugin,
which adopts a cloud infrastructure and allows the programmers
to try in practice with convenience.

• We conduct extensive experiments (simulation, model-wise eval-
uation, and user study) showing the effectiveness of individual
models as independent model design, model interaction as a
whole system, and UI design as a tool.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenyan Liu, Yufan Cai, Yun Lin, Yuhuan Huang, Yunrui Pei, Bo Jiang, Ping Yang, Jin Song Dong, and Hong Mei

H1

H2

src/testing/benchmark.go

H3

H4

H5

H6

src/testing/testing.go

Syntactic
propagation

Logical
propagation

Semantic
propagation

Semantic
propagation Syntactic

propagation

Logic
propagation

Figure 2: The type of edit propagation in the code-editing
example showed in Table 1 and Table 2.

Given the space limit, the tool video demonstration, experimental
details, and further discussion are available at [6].

2 Motivating Example
Table 1 and Table 2 (implemented by Go programming language)
shows a simplified code-editing example from the commit 00a2
under the project golang/go1. We summarize the programmer’s
editing intention in such a commit as follows.
Original Design. The function under edit is to update the way to
select test cases and benchmark in the golang/go project. The Go
project is delivered with the testing package where a set of test
cases are used to check the performance on a set of benchmarks of
Go programs. The source file src/testing/testing.go automates
the testing of the project by selecting a subset of required test cases,
and the source file src/testing/benchmark.go selects a subset of
the benchmark of Go programs such as runtime overhead, memory
allocation, lock performance, etc. The old implementation of select-
ing test cases and benchmarks is by keyword-based matching the
name of benchmark and test suites with a string (see the hunk of
Before Edit of H3 in Table 1 and H5 in Table 2).
Editing Intention. In the editing session, the programmer in-
tended to introduce a regular expression matcher to select the
required benchmark and test cases.
Editing Implementation. To this end, the programmer edits the
benchmark.go and testing.go files as follows:
• H1 (see Table 1): Introduce a variable matcher with pointer type
*matcher in the type benchContext;

• H2 (see Table 1): Introduce a parameter of type matcher when
initializing a reference of benchContext;

• H3 (see Table 1): Replace the keyword-basedmatching implemen-
tation with regular-expression-based matching implementation;

• H4 (see Table 2): Introduce a variable matcher with pointer type
*matcher in the type testContext;

• H5 (see Table 2): Replace the keyword-basedmatching implemen-
tation with regular-expression-based matcher implementation;

• H6 (see Table 2): Introduce a parameter of type matcher when
initializing a reference of testContext;
While each edit is a simple operation, they are interactive and

relevant as different types of edit propagation as shown in Figure 2.
1The address can be referred in https://github.com/golang/go

Project

Prior Edits & User
Editing Prompt

Edit-
propagating
File Locator

Edit-
dependency

Analyzer

Relevant
Source File

Edit-
propagating
Line Locator

Editing
Locations

Relevant
Prior Edits

Edit-content
Generator

Edit
Options

Subsequent Edit Analysis

Prior Edit Analysis Edit Generation

Figure 3: Overview of CoEdPilot, consisting of subsequent
edit analysis, edit generation, and prior edit analysis. The
analysis is triggered once an edit-trigger event happens. Co-
EdPilot orchestrates a set of neural-transformer-based com-
ponents to accomplish the editing task

Following the notation in Table 1 and Table 2, we use H𝑖 (𝑖 = 1, ...,
6) to indicate the hunk in the code example.
• Syntactic Propagation: Syntactic propagation indicates that an
edit 𝑒𝑖 incurs a compilation error in the project, which further
mandates another edit 𝑒 𝑗 to fix the error. For example, hunk H1
happens so as to cause a compilation error on the location of
hunk H2 for missing an initialized parameter. In Figure 2, the
fact that H1 and H2 point to each other indicates that the edit
propagation caused by program syntax is mutual.

• Semantic Propagation: Semantic propagation indicates that an
edit 𝑒𝑖 is propagated to 𝑒 𝑗 because 𝑒𝑖 and 𝑒 𝑗 are applied to similar
functionalities. In Figure 2, for the example of the editing pair
(H1, H4) and (H3, H5), an edit can propagate to the other edit in
the pair.

• Logical Propagation: Logical propagation indicates that an edit
𝑒𝑖 lays a foundation for another edit 𝑒 𝑗 to accomplish a task. In
Figure 2, H1 does not necessarily cause a compilation error at H3,
however, H1 introduces a variable matcher so that the matching
implementation is updated at H3.
Thus, we can see that (1) the edits are interactive with each

other in a different way, (2) only a limited number of prior edits
is relevant and informative to contribute to an edit, and (3) the
edit can propagate to any possible files in the project. However,
despite that the existing state-of-the-art solutions such as GRACE
[25], CCT5 [37], MODIT [15] and CoditT5 [58] lay an important
foundation (see the summary their model architecture in Figure 1),
they are still far from accomplishing the edit recommendation tasks
in the aforementioned practice.

3 Approach
Figure 3 shows an overview of our CoEdPilot design, which takes
a set of prior edits and an optional edit prompt, and generates the
output as a list of subsequent editing locations and their editing
options. Overall, the CoEdPilot architecture consists of subsequent
edit analysis, prior edit analysis, and edit generation.

CoEdPilot: Recommending Code Edits with Learned Prior Edit Relevance, Project-wise Awareness, and Interactive Nature ISSTA ’24, September 16–20, 2024, Vienna, Austria

• Subsequent Edit Analysis takes a set of selected prior code
edits and an optional editing prompt to estimate the subsequent
edits in the project. In this work, we adopt a two-stage esti-
mation. The first stage estimates the relevant source files, with
Edit-propagating File Locator , for where the subsequent edits can
happen in a coarse-grained (and lighted) way. The second stage
further applies a fine-grained detector (i.e., Edit-propagating Line
Locator) to predict the editing type of each line of code in those
files.

• Prior Edit Analysis takes the editing locations and selects the
most relevant prior edits with Edit-dependency Analyzer , regard-
ing their potential of syntactic, semantic, and logical edit propa-
gation to a target edit location.

• Edit Generation generates the concrete edit options for each
edit location with predicted editing type of insert and replace, re-
garding the selected prior edits. Note that, once the user confirms
a recommended edit option by (1) directly accepting our recom-
mendation, (2) modifying based on our recommendation, or (3)
input his or her own edit, it will be included as a new prior edit.
Further, the newly applied edit serves as a new edit-triggering
event to launch a new round of editing recommendations.

3.1 Subsequent Edit Analysis
Problem Statement.We consider the problem of finding the subse-
quent edits with an edit and its optional user prompt as a problem of
edit propagation. Thus, we rephrase the problem as follows. Given
a project be a set of files 𝑃 , the user’s editing prompt be 𝑝𝑟𝑝 , the
latest edit 𝑒 = (𝑐𝑏 , 𝑐𝑎) where 𝑐𝑏 is the code before edit, and 𝑐𝑎 is
the code after edit, we aim to locate a subset of files 𝐹 ⊂ 𝑃 , where
each 𝑓 ∈ 𝐹 specifies the subsequent edits by attaching each line of
code with an editing type as keep, insert, or replace.
Challenge. As mentioned above, the edits can interact with each
other regarding the syntactic dependency and semantic relevance.
As for analyzing syntactic dependencies, we usually need to parse
the whole compilable project to build the program dependency
graph [20] to track the data, control, and call dependencies. How-
ever, the graph construction for large projects could be time-consuming.
Further, the implementation of syntactic graph construction [8, 51]
and semantic relevance [7, 18, 30] are usually language-dependent.
Therefore, we use the neural models for estimating both the syn-
tactic dependency and semantic relevance between two pieces of
source code in a more runtime-efficient and language-independent
way.

In this work, we adopt a two-stage localization solution, i.e., file
localization in a coarse-grained way and line of code localization
in a fine-grained way.

3.1.1 Propagation File Localization. Technically, we select a sub-
set 𝐹 ′ ⊂ 𝐹 where 𝐹 ′ = {𝑓 |𝑠𝑢𝑏𝑒𝑑𝑡 (𝑓 , 𝑒) > 𝑡ℎ𝑠𝑢𝑏 , 𝑓 ∈ 𝐹 }, where
𝑠𝑢𝑏𝑒𝑑𝑡 (., .) is a likelihood estimation function for the file 𝑓 which
can be co-edited given the input edit 𝑒 . Further, 𝑡ℎ𝑠𝑢𝑏 is a threshold
to estimate its likelihood.

We estimate the propagation likelihood regarding two factors,
i.e., (1) the estimated dependency of the file 𝑓 on 𝑒 , and (2) the
semantic similarity between some code in 𝑓 and 𝑒 . Namely, we
design Equation 1 as follows.

𝑠𝑢𝑏𝑒𝑑𝑡 (𝑓 , 𝑒) = 𝛼1 · 𝑑𝑒𝑝 (𝑒, 𝑓) + 𝛼2 · 𝑠𝑒𝑚(𝑒, 𝑓) + 𝜖 (1)

Figure 4: An example of input of our transformer for learning
the dependency.

In Equation 1, we let each coefficient 𝛼𝑖 > 0. We quantize each
factor (estimated dependency 𝑑𝑒𝑝 (𝑒, 𝑓) and semantic similarity
𝑠𝑒𝑚(𝑒, 𝑓)) as a score between 0 and 1 as follows.

Estimated Dependency. Given an edit 𝑒 = (𝑐𝑏 , 𝑐𝑎) and a source
file 𝑓 , we develop a dependency inference function 𝑑𝑒𝑝 (𝑒, 𝑓) to
quantize the likelihood that 𝑓 depends on 𝑒 . Technically, we use
a transformer (e.g., CodeT5 and CodeBERT) as our base model
to learn the dependency between the source code. We follow the
design of GRACE [25] by constructing the input of a transformer-
based language model as shown in Figure 4. Specifically, we use
the tags <from> and <to> as the separator between two pieces of
source code. Those tags play a role as instruction tuning. Then we
add one dense layer to have two output neurons activated with
sigmoid function, i.e., (1) the former code depends on the latter
code and (2) the latter code depends on the former code. Given a
pair of source code 𝑐1, 𝑐2, their labelled dependencies are 𝑦1 and 𝑦2
(𝑦1 = 1 or 0 is for whether 𝑐1 depends on 𝑐2 and 𝑦2 = 1 or 0 is for
whether 𝑐2 depends 𝑐1), and their estimated dependency are 𝑦1 and
𝑦2, we design the loss function as Equation 2:

𝑙𝑜𝑠𝑠 (𝑐1, 𝑐2) = −(𝑦1 × 𝑙𝑜𝑔(𝑦1) + (1 − 𝑦1) × 𝑙𝑜𝑔(1 − 𝑦1)+
𝑦2 × 𝑙𝑜𝑔(𝑦2) + (1 − 𝑦2) × 𝑙𝑜𝑔(1 − 𝑦2))

(2)

In this work, we use Jin et al.’s dependency analyzer [28, 29] to
construct the training dataset. Limited by the input length, we split
a file 𝑓 into 𝑘 smaller segments as 𝑠𝑒𝑔1, .., 𝑠𝑒𝑔𝑘 . Further, we choose
𝑐𝑏 (the code before the edit) of the latest edit as the target code 𝑐𝑡𝑎𝑟 .
Then we estimate the likelihood of the dependency between 𝑐𝑡𝑎𝑟
and each code segment. For convenience, we use the symbol of the
second output neuron 𝑦2 to denote the likelihood of the latter code
to depend on the former code, 𝑑𝑒𝑝 (𝑒, 𝑓) = 𝑚𝑎𝑥 (𝑦2 (𝑐𝑡𝑎𝑟 , 𝑠𝑒𝑔𝑖)).
That is, we adopt one-directional dependency to infer the edit
propagation. Further, we select the𝑚𝑎𝑥 (.) function as we favour
the recall over the precision in this stage. By replacing the analyzer
tool [28, 29] with a neural network, we reduce the runtime overhead
of analyzing a pair of code snippets from ∼70 seconds to ∼0.01
second.

Semantic Similarity and Prompt Relevance. We capture the seman-
tic similarity of code-to-code by neural embedding in a universal
way. The rationale is that we believe a pretrained neural network
such as CodeT5 and CodeBERT can capture both the syntactic and
semantic similarity. Therefore, still considering the limit of input
length of a transformer, we split a source file 𝑓 into 𝑘 segments
as 𝑠𝑒𝑔1, ..., 𝑠𝑒𝑔𝑘 , 𝑐𝑡𝑎𝑟 = 𝑐𝑏 where 𝑐𝑏 is the code before the edit, and

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenyan Liu, Yufan Cai, Yun Lin, Yuhuan Huang, Yunrui Pei, Bo Jiang, Ping Yang, Jin Song Dong, and Hong Mei

M

Transformer

Prompt Prior	editsLoC M LoC …

R K …

<code-window>
<MASK>	func	newTestContext(…)	*testContext	{
<MASK>	return	&testContext{
<MASK>	startParallel:	make(chan	bool),
…
</code-window>

<prompt>
introduce	a	regular	expr	
…
</prompt>

<prior-edits>
<edit>
<D>	testName	:=	name
<A>	testName,	ok	:=	t.context.match	…
</edit>
<edit>
…
</edit>
…
</prior-edits>

Figure 5: Overview of fine-grained edit location architecture.
We formulate the edit location problem as a MLM (Mask
Language Modelling) problem to predict the edit type of each
LoC (Line of Code).

𝑒𝑚𝑑 (.) as the representation of a piece of code or a prompt extracted
from the transformer, we can have:

𝑠𝑒𝑚(𝑒, 𝑓) =𝑚𝑎𝑥 (𝑐𝑜𝑠 (𝑒𝑚𝑑 (𝑐𝑡𝑎𝑟), 𝑒𝑚𝑑 (𝑠𝑒𝑔𝑖))) (3)

By this means, with given hyperparameters 𝛼1, 𝛼2, 𝜖 , and 𝑡ℎ𝑠𝑢𝑏 ,
we have a set of reported source files in a coarse-grained way. These
coefficients, intercept and thresholds are available at [6].

3.1.2 Propagation Line Localization. Given the located source files
with the propagation potential, we apply a sliding window across
each file to identify the editing type of each line of source code. As
shown in Figure 5, we fine-tune a base transformer model as a MLM
(Mask Language Modeling) [17] problem by instruction tuning [47].
Overall, the input of the transformer consists of the target code
inside the window, the user prompt, and the relevant prior edits (see
more details in Section 3.2). For each input component, we introduce
instructions (or tags) such as code-window, prompt, prior-edits
and edit as the separators for the model to learn the input structure.
For each line of the code, we additionally introduce an operator as
follows:

• keep: the operator type indicates that a line should not be changed,
symbolled as <K>.

• insert: the operator type indicates that there shall be some code
inserted after the line, symbolled as <I>.

• replace: the operator type indicates that the line should be re-
placed by either an empty line (i.e., delete) or a few different lines
(update), symbolled as <R>.

These edit operators are masked with a special token <MASK> in
input. Therefore, we apply MLM task on the operators to train the
model to recover them. The prompt is collected from the commit
message from the code commit histories. Further, we introduce the
details of selecting the prior edits in Section 3.2 and Section 3.4.

I/R

Transformer

Prompt Prior	editsLoC

<code-window>
…
<K>	ctx	:=	&benchContext{
<I>	extLen:	len(benchmarkName("",	maxprocs)),
<K>	}
…
</code-window>

<prompt>
introduce	a	regular	expr	
…
</prompt>

<prior-edits>
<edit>
<D>	testName	:=	name
<A>	testName,	ok	:=	t.context.match	…
</edit>
<edit>
…
</edit>
…
</prior-edits>

Generated	Edit	Content

K LoC K LoC

Figure 6: Overview of edit generator, which generates the
edit content for a fine-grained edit location.

3.2 Prior Edit Analysis
Problem Statement. Given a set of prior edits 𝐸𝑝 = {𝑒𝑝1 , ..., 𝑒𝑝𝑘 }
where 𝑒𝑖 = (𝑐𝑏𝑖 , 𝑐𝑎𝑖), and the target code 𝑐𝑏𝑡𝑎𝑟 , we quantize the like-
lihood of the influence of 𝑒𝑝𝑖 to 𝑐𝑏𝑡𝑎𝑟 between 0 and 1. Specifically,
we denote the estimation function as 𝑟𝑒𝑙 (., .) : 𝐸𝑝 × 𝐶 → (0, 1),
where 𝐶 is the set of pieces of code, i.e., 𝑟𝑒𝑙 (𝑒𝑖 , 𝑐𝑏𝑡𝑎𝑟) ∈ (0, 1).

We quantize the relevance of prior edits by their syntactic de-
pendency and semantic similarity by Equation 4:

𝑟𝑒𝑙 (𝑒𝑝𝑖 , 𝑐𝑏𝑡𝑎𝑟) = 𝐹𝐶𝑁 (𝑑𝑒𝑝 (𝑒𝑝𝑖 , 𝑐𝑏𝑡𝑎𝑟), 𝑠𝑒𝑚(𝑒𝑝𝑖 , 𝑐𝑏𝑡𝑎𝑟),
𝑙𝑜𝑐𝑠𝑖𝑚 (𝑒𝑝𝑖 , 𝑐𝑏𝑡𝑎𝑟))

(4)

Further, in Equation 4, 𝐹𝐶𝑁 is a multi-layer fully connected net-
work, the dependency estimation function 𝑑𝑒𝑝 (., .) for estimating
the dependency from 𝑐𝑐𝑡𝑎𝑟 to the code before the edit of 𝑒𝑝𝑖 and
the semantic relevance function 𝑠𝑒𝑚(., .) is defined in Section 3.1.1.
Function 𝑙𝑜𝑐𝑠𝑖𝑚 evaluates the proximity between 𝑒𝑝𝑖 and 𝑐𝑏𝑡𝑎𝑟 as:

𝑙𝑜𝑐𝑠𝑖𝑚 (𝑒𝑝𝑖 , 𝑐𝑏𝑡𝑎𝑟) =
{
1 − |𝑙𝑜𝑐 (𝑒𝑝𝑖)−𝑙𝑜𝑐 (𝑐𝑏𝑡𝑎𝑟) |

𝑘
if 𝑙𝑑 (𝑒𝑝𝑖 , 𝑐𝑏𝑡𝑎𝑟) < 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)
In Equation 5, we use a sliding window of size 𝑘 to define whether
the location difference of 𝑒𝑝𝑖 and 𝑐𝑏𝑡𝑎𝑟 is small (i.e., 𝑙𝑑 (𝑒𝑝𝑖 , 𝑐𝑏𝑡𝑎𝑟) <
𝑘). If it is, we estimate the proximity as Equation 5. Otherwise,
the function 𝑙𝑜𝑐𝑠𝑖𝑚 (., .) is 0. Finally, we define a threshold 𝑡ℎ𝑝𝑟𝑖 to
identify the set of relevant prior edits 𝐸𝑟𝑒𝑙 = {𝑒𝑝 |𝑟𝑒𝑙 (𝑒𝑝 , 𝑐𝑏𝑡𝑎𝑟) >
𝑡ℎ𝑝𝑟𝑖 }.

3.3 Edit Generation
Figure 6 shows the overall model architecture to generate edit
content on one edit location and selected prior edits. Similar to
the design of the location of edit lines, the edit generation model
takes as input a code-window under the edit, the user’s prompt, and
relevant prior edits. The prompt and the prior edits share similar
tags for the model to capture the structure.

CoEdPilot: Recommending Code Edits with Learned Prior Edit Relevance, Project-wise Awareness, and Interactive Nature ISSTA ’24, September 16–20, 2024, Vienna, Austria

In contrast, the code window describes a hunk consists of consec-
utive lines of the same edit type (replace and insert) with a few lines
of type keep as its context. Specifically, each line is attached with a
tag <K> for the edit type of keep; and with a tag <I> or <R> for the
edit type of insert and replace respectively. Further, the output pre-
dicts the edit content of the edit location. We train the transformer
with classical cross-entropy loss [1]. On the runtime, we use Beam
Search [21] to generate 𝑘 edit options ranked with their confidence.
Last but not least, the user can either accept or modify upon our
recommended edits, the new edit will be kept as a new prior edit
as user feedback, to further facilitate the whole editing session.

3.4 Model Training
Overall, we have the following neural models to train, i.e., an Edit-
dependency Analyzer (see Section 3.1.1), an Edit-propagating Line
Locator (see Section 3.1.2), and an Edit-content Generator (see Sec-
tion 3.3).

We first train the Edit-dependency Analyzer by collecting the
dependency of source code by running Jin et al.’s dependency anal-
ysis tool [28, 29] on the open-source projects. Note that, our neural
dependency analyzer is expected to predict the dependency be-
tween arbitrary two pieces of code without the awareness of their
programming language. Then, we train the Edit-propagating Line
Locator and an Edit-content Generator in an interactive manner. We
collect the commits from the open source projects as the training
dataset (see Section 5). For each commit, we take one hunk as an
individual edit, then we train our models by estimating the random
order of both intra-file edits and inter-file edits. The rationale is
that we do not know the sequence of files being edited and that of
the edited locations within a file. Therefore, we do not make any
editing partial order assumption on those edits.

Further, given a set of prior edits, we normalize their relevance
into a probability distribution 𝑋 . For example, assume that we have
three prior edits with the relevance to an edit and a prompt (i.e., the
editing description) as 0.7, 0.3, 0.6, thenwe normalize their relevance
to 𝑋 = { 0.7

0.7+0.3+0.6 ,
0.3

0.7+0.3+0.6 ,
0.6

0.7+0.3+0.6 } = {0.437, 0.187, 0.375} to
sample the prior edits during the training.

4 Tool Design
Figure 7 shows a screenshot of our CoEdPilot tool as a Visual Studio
Code extension [2], which consists of functions designed according
to our approach (see Figure 3). We introduce the basic functions
and GUI (see Figure 7) as follows. A detailed video is available at
[6].

• Triggering the Edit Recommendation: When the users edit
the code, they can trigger the edit recommendation with a short-
cut (or right-click the editor) to request edit locations. Then, an
Edit Description Input ① will be shown for them to input their
optional description of the edit.

• Subsequent Edit Recommendation: Then, CoEdPilot shows
an Edit Location View ② where the edit locations are organized
in terms of edit files as their parent nodes and edit lines as their
child nodes. The users can click a child node to highlight the
corresponding location in the code editor, where a line with edit
type of insert is in green and a line with that of replace is in red.

• Edit Option Recommendation: Next, the users can further
request the edit option in each edit location, as shown in Editable
Difference View ③ in Figure 7 where how the code before and
after the edit is simulated. Users can use the Edit Operation Button
④ to browse, accept and ignore the edit options. The accepted edit
(and their follow-up modification) will be recorded as prior edits
for next recommendation.

• Cloud Service: Last, we follow the design of Copilot to deploy
CoEdPilot on the cloud so that the user request (e.g., for edit loca-
tion and edit generation) and their response are communicated
between the server and the client. Users can check the network
connection by Query State ⑤ as in Figure 7.

5 Experiment
We evaluate CoEdPilot with the following research questions:

• RQ1 (Locating Propagating Files, see Section 3.1.1): Can
CoEdPilot locate the edit-propagating source files?

• RQ2 (Locating Propagating Lines, see Section 3.1.2): Given
the located source files, can CoEdPilot locate the edit-propagating
lines of code?

• RQ3 (Edit Generation, see Section 3.3): Given edit location,
what is the performance of generating edit options?

• RQ4 (Prior Edit Relevance, see Section 3.1.2): Can CoEdPilot
select the relevant prior edits accurately?

• RQ5 (Performance Boost for State-of-the-arts): Whether the
framework of CoEdPilot further boost the performance of the
state-of-the-art solutions?

Note that, CoEdPilot serves more as a complementary frame-
work to enhance the state-of-the-art edit generator by locating
subsequent edits and capturing relevant prior edits. Thus, in RQ5,
we briefly compare our edit generation model with the state-of-the-
arts, followed by how we can boost their performance.

5.1 Benchmark Construction
To evaluate the performance of CoEdPilot, we construct a bench-
mark of 5 programming languages (i.e., JavaScript, Java, Go, Python,
and TypeScript) from 471 open-source projects. Upon construction,
we select the top 100 projects from GitHub according to the num-
ber of their stars. For each programming language, we remove the
projects with educational purposes (e.g., tutorial) or non-English
commit messages. For each project, we select commits with the
following criteria2 in our dataset:

• A commit shall include at least three hunks;
• A commit shall include hunks with the number of changed lines
of code less than 15 (considering the length limit of our model);

• The commit message shall be an English message with a token
length over 5;

• The commit shall not contain the automatically generated source
files (e.g., the Java files with @auto keywords) or non-source files
(e.g., .bak, .log, and .pyc files)

2In this work, we provide our definition of good quality, but we encourage the practi-
tioners to adjust the definition according to their practical scenarios.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenyan Liu, Yufan Cai, Yun Lin, Yuhuan Huang, Yunrui Pei, Bo Jiang, Ping Yang, Jin Song Dong, and Hong Mei

Figure 7: The screenshot of CoEdPilot tool, implemented as a Visual Studio Code extension.

Table 3: Benchmark of CoEdPilot on 471 open source projects
on 5 programming languages. For the columns of ‘Train’,
‘Valid’, ‘Test’ dataset, we show the number of their training
samples.

Language Model Train Valid Test #Proj #Com #File #Hunk

JavaScript
File location 22K 3K 6K

93 34K 34K 658KLine location 382K 54K 109K
Edit generation 460K 65K 130K

Java
File location 68K 10K 20K

89 24K 72K 556KLine location 335K 47K 95K
Edit generation 389K 55K 111K

Go
File location 46K 7K 14K

98 50K 88K 1174KLine location 695K 99K 198K
Edit generation 822K 117K 234K

Python
File location 60K 9K 17K

91 33K 42K 555KLine location 327K 46K 93K
edit generation 389K 55K 111K

TypeScript
File location 65K 9K 17K

100 39K 76K 817KLine location 480K 68K 137K
Edit generation 572K 81K 163K

As a result, we have the dataset as shown in Table 3, with an average
commit filter rate of 6.89%. Further, we train our dependency ana-
lyzer on 49 sampled projects of different programming languages
with 77K positive pairs and 24K randomly sampled negative pairs.

5.2 Experiment Setup
5.2.1 RQ1 (Propagating-file Location). We extract a commit with 𝑘
hunks as a set, denoted as 𝐻 , located in𝑚 source files, to construct

𝑘 training samples. In each sample, we select one hunk ℎ ∈ 𝐻

as the target hunk. Assume that the𝑚′ files with other hunks as
the ground-truth positive files, and we randomly select 𝑛 (𝑛 > 𝑚)
files not in the commit as negative files. If CoEdPilot reports 𝑔 files
as positive and ℎ out of 𝑔 files are true positive, we measure the
precision of file location as ℎ

𝑔 and the recall of file location as ℎ
𝑚 .

5.2.2 RQ2 (Propagating-line Location). We parse a commit with
𝑘 hunks as a set, denoted as 𝐻 , located in 𝑚 files to construct 𝑘
training samples as follows. Each time, we select one out of 𝑘 hunks,
i.e., ℎ ∈ 𝐻 , as the target edit to be predicted. We select relevant
prior edits from 𝐻 \ {ℎ} with CoEdPilot. Then we apply a sliding
window of size 𝑠 across the𝑚 files for CoEdPilot to report the hunk
ℎ. We apply the above procedure for 𝑘 times, each of which we
select a different target edit.

We measure the average accuracy, precision, and recall in the
𝑘 times as follows. In each time, for the𝑚 lines of code not in the
prior edits, we measure the accuracy as 𝑛

𝑚 , where 𝑛 is the number
of lines with edit type predicted accurately. Further, we compute
the precision and recall for each of the three labels individually.
Assume for each edit type, there are 𝑙 positive lines of code and
CoEdPilot reports 𝑡 lines of code as positive and 𝑑 out of 𝑡 lines are
the true positive, thus we have the precision as 𝑑

𝑡 and the recall
as 𝑑

𝑙
. Given the imbalance in sample sizes across these labels, we

employ the macro-averaging method to calculate the final precision
and recall.

5.2.3 RQ3 (Edit Generation). Given a commit with the set of hunks
as 𝐻 , we then choose one hunk ℎ as the target edit, and have
𝐻 ′ = 𝐻 \ {ℎ}, as the prior edits. We use Beam Search to generate

CoEdPilot: Recommending Code Edits with Learned Prior Edit Relevance, Project-wise Awareness, and Interactive Nature ISSTA ’24, September 16–20, 2024, Vienna, Austria

the top-1, top-3, top-5, and top-10 edit options for each edit location.
For each configuration, we measure its performance with (1) the
exact match rate (EMR) for a commit (i.e., an edit session) and (2)
the BLEU4 score [45] of the generated edit content. Specifically,
assume that we generate the edit content exactly the same as the
ground truth edit for𝑚 out of 𝑘 times, the exact match rate is 𝑚

𝑘
.

Further, we calculate the highest BLEU4 score from all 𝑘 times’
predictions.

5.2.4 RQ4 (Prior Edit Prediction). We compare training the edit
locating models and the edit generation models with selective prior
edits (by our Edit-dependency Analyzer) and random prior edits.
We compare their performance as mentioned in Section 5.2.2 and
Section 5.2.3.

5.2.5 RQ5 (Performance Boost). We design the experiment as fol-
lows. We select the state-of-the-art solutions, i.e., GRACE [25],
CCT5 [37], and CoditT5 [58], as the baselines, observe the boosting
effect of CoEdPilot. CoPilot [23] is neglected for its programming
API is yet published at the time of this work.

• Rough Edit Location We provide the baselines with rough
location as a general hunk area to observe their performance in
generating edits.

• Precise Edit LocationWe equip baselines with our edit location
model so that they are fed with specific lines to further observe
their performance.

Wemeasure the performance of edit generation as in Section 5.2.5.
Given the space limit, we provide more experimental details (e.g.,
hyperparameters, hardware configuration, etc.) in our websites [6].

5.3 Results
5.3.1 RQ1 and RQ2 (Propagating-file Location & Line). Table 4
shows the overall performance of CoEdPilot to detect the edit loca-
tions regarding different granularity (i.e., file-level and line-level).
We achieve a average precision of 79.52% and a recall of 72.93% to
locate the edit file, and the precision of on average 86.97% and the
recall of 84.82% to locate the edit lines. We observe that the per-
formance of CoEdPilot lies in identifying the edit pattern (e.g., the
commit 4bf1c in Golang/Go project (see an example at [10]), which
demonstrates the concrete example). Further, the average runtime
overhead to infer a file takes 1.6s. We probe into the commits and
summarize the reasons for false positives and false negatives as
follows:
Reason 1: Noisy Samples in the Training Dataset. As for in-
ferring the location of subsequent edits, we find that the quality
of the dataset is of vital importance. Despite that we have set a
number of criteria to filter out some commits, we still observe that
noisy training samples might introduce negative effects. One of the
observations is that some programmers can submit some irrelevant
changes files (as well as the edits) in a single commit, which makes
CoEdPilot challenging to report some edit locations. Further, we
find that quite a number of edits are about code comments and
documentation (e.g., the commit 3f442 in golang/go project [9]),
which may not be well captured by CoEdPilot.

Table 4: The accuracy of propagating-file & line location

Programming
Language

File Location Line Location

Precision
(%)

Recall
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

JavaScript 81.52 71.21 94.89 86.62 83.88
Python 70.84 73.40 94.48 85.03 82.64
Java 85.28 75.67 95.37 87.99 85.99
Go 80.10 72.12 95.79 88.99 87.32
TypeScript 79.84 72.25 95.23 86.21 84.25
Average 79.52 72.93 95.15 86.97 84.82

Table 5: The performance of edit generation
Programming
Language Metric Top-1 Top-3 Top-5 Top-10

Javascript BLEU4 60.70 69.71 71.37 73.02
EMR(%) 41.83 47.50 49.31 50.99

Python BLEU4 57.59 65.65 67.47 69.11
EMR(%) 33.48 38.52 40.41 42.09

Java BLEU4 60.54 68.35 70.11 71.73
EMR(%) 40.69 46.87 48.78 50.51

Go BLEU4 65.37 71.96 73.47 74.98
EMR(%) 48.94 55.09 57.18 59.16

Typescript BLEU4 61.75 70.31 71.99 73.68
EMR(%) 41.58 46.86 48.57 50.65

Table 6: Relevance of prior edits on edit location& generation

Prior Edit
Relevance

Edit-propagating
line locator

Edit-content
generator

Accuracy
(%)

Precision
(%)

Recall
(%)

EMR
(%) BLEU4

Selective
Prior Edits 94.89 86.62 83.88 41.83 60.70

Random
Prior Edits 91.86 81.73 72.37 18.87 46.56

Nevertheless, cleaning the whole dataset regarding the edit rele-
vance is a non-trivial work, which is iterative and interactive be-
tween human observation/interpretation and automatic inference.
Thus, we leave the solution in our future work.
Reason 2: Informativeness of Edit Inference. Further, we ob-
serve that some false negatives are caused by single-directed inter-
action. For example, an addition of method call implies an addition
of importing a relevant library declaring the method, however,
the implication does not hold in the other way (see example at
[11]). When some interactions between the edits are not causal, the
inference becomes more challenging.

5.3.2 RQ3 and RQ4 (Edit Generation & Prior Edit Prediction). Ta-
ble 5 shows the overall performance of edit generation with Top-k
candidates. Further, Table 6 shows the relevance of prior edits in
locating the subsequent edits and edit content generation. We can
see that (1) CoEdPilot achieves good performance in generating
the edit options, and (2) the selective prior edits play a vital role in
enhancing the performance. An example can be referred to [11],
where CoEdPilot is good at capturing the edit pattern (via syntactic
dependency or semantic relevance). The random prior edits can
break the pattern, which introduces additional edit chaos during
the recommendation. Further, we find that the mis-prediction of
the edit options shares similar reasons introduced in Section 5.3.1.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenyan Liu, Yufan Cai, Yun Lin, Yuhuan Huang, Yunrui Pei, Bo Jiang, Ping Yang, Jin Song Dong, and Hong Mei

Table 7: Performance Boost with CoEdPilot
Approach EMR(%) BLEU4
CoEdPilot (Line Locator + Edit Generator) 29.96 78.58
CoditT5 7.42 69.01
GRACE 2.73 38.36
CCT5 14.19 75.37
GRACE + Line Locator 18.61 71.61
CCT5 + Line Locator 15.45 78.27

Table 8: Runtime Estimation of CoEdPilot

Step
File locator

(s / file)
Line locator

(s / file)

Edit-content
generator
(s / location)

Prepare Input 0.0064 0.3976 0.0683
Model Inference 0.1008 0.0878 0.3972
Total 0.1072 0.4854 0.4655

5.3.3 RQ5 (Performance Boost). In Table 7, we compare CoEdPilot
with three baselines, i.e., GRACE, CCT5, and CoditT5, in generating
top-1 edit option. As described in Section 5.2.5, the fine-tuned base-
lines are fed with the hunk-level location (i.e., the lines included in
a hunk) to predict the edited code. We can see that the performance
gap between CoEdPilot and the baselines are large. The reason
lies in that the edit locator can largely help the edit generator to
generate edits in a far more precise position.

Given that CoEdPilot is an extensible and integrable framework,
we replace our edit generation model with the fine-tuned base-
lines, observing that the performance of both GRACE and CCT5
is boosted significantly. Note that, CoditT5 can predict location as
CoEdPilot, we do not equip it with our locator. In comparison to
CoditT5, we observe that our two-stage model has the advantage of
utilizing more input length given the limit of existing base models
such as CodeT5.

6 User Study
To further evaluate how the programmers can use CoEdPilot as a
tool in practice, we design a user study to evaluate its functionalities
as described in Section 4.
Baseline. To evaluate whether the design of CoEdPilot can well
support practical code edits, we choose Copilot [23] as a baseline
for its wide popularity for generating code. We omit the full manual
editing mode in this study because (1) Copilot is supported by pow-
erful GPT-3.5 Turbo, which is shown to improve the programming
productivity by 27% - 57% [42], and (2) the limitation of budget and
overhead.
Participant. We recruit 18 participants from three universities in
China and Singapore, including both undergraduate and graduate
students. We conduct a pre-study (including a test) based on their
programming experience. Their demographic analysis is available
at [6]. We divide them into two equivalent groups based on their ex-
perience. The experimental group uses CoEdPilot while the control
group uses Copilot in the study.
Code Edit Tasks. To ensure that the participants can focus on edit-
ing with a light-weighted overhead of comprehension, we extract
a simplified version from three real-world commits. The tasks are
selected as follows:

Table 9: Overall performance of EG (Experimental Group)
and CG (Control Group):The completion time is in seconds.
EG Task1 Task2 Task3 CG Task1 Task2 Task3
P1 221 515 1196 P10 339 696 1287
P2 897 389 279 P11 360 776 1563
P3 366 487 216 P12 480 483 545
P4 160 529 963 P13 522 724 1770
P5 230 301 756 P14 277 395 838
P6 364 473 617 P15 181 446 930
P7 329 688 588 P16 337 720 825
P8 840 780 1020 P17 151 666 1515
P9 290 638 1050 P18 266 722 1563
Average 410.78 533.33 742.78 Average 323.67 625.33 1070.33

• Bug Fix (Task 1):We show a bug asmistakenly used range(arr)
for range(len(arr)) in the project. We ask the participants to
find and fix multiple such mistaken uses across the project.

• Refactoring (Task 2): We ask the participants to extract three
pieces of duplicated code into a new function.

• Feature Enhancement (Task 3): We ask the participants to
introduce a scale capability to normalize the input vectors for ex-
isting class classifiers, which requires multiple edit propagation.

Study Setup. We conducted a warm-up session with a tutorial
for both CoEdPilot and Copilot, followed by a practice task, to
familiarize them with the tools. For each task, we allocate each par-
ticipant with 30 minutes to accomplish. We prepare the test cases
for each edit task for them to validate their edits. The test cases are
designed to guarantee that all the participants can confirm their ac-
complishing edits. During the study, we ask the participants to run
a video-recorder so that we can conduct the post-mortem analysis.
Finally, we measure their performance regarding (1) whether they
can successfully accomplish the tasks (i.e., all the test cases passed)
and (2) their efficiency in accomplishing the tasks.
Results. Table 9 shows the participants’ performance to accomplish
the code-editing tasks, with the following observation:
• Task 1: EG underperforms CG in Task 1 on average completion
time without statistical significance (the 𝑝-value in Wilcoxon
Signed Rank test is 0.33 and the effect size is -0.08).

• Task 2: EG outperforms CG in Task 2 on average completion
time without statistical significance (the 𝑝-value in Wilcoxon
Signed Rank test is 0.07 > 0.05 and the effect size is 0.60).

• Task 3: In contrast, EG outperforms CG in Task 3 on the com-
pletion time with statistical significance (the 𝑝-value is 0.003 <
0.05 and the effect size is 0.96).

WhyCG outperforms EG in Task 1? In Task 1 (i.e., fixing a dupli-
cated bug), we observe that CoEdPilot users (EG group) still suffer
from the learning curve of the new tool for running the function of
predicting edit location and edit content. Further, some participants
(P2 and P8) were still building their trust in our recommendations
such as edit location and edit content, despite that they are accurate.
As a result, they spend more time confirming our results. We deem
this a common problem for any new tool deployed on either user
study or production line. In contrast, given that the edit pattern
in the task is simple, some Copilot user (e.g., P17) tries to search
the expression across the project. In the other words, they address
their need of edit location with keyword-based search in Task 1.

CoEdPilot: Recommending Code Edits with Learned Prior Edit Relevance, Project-wise Awareness, and Interactive Nature ISSTA ’24, September 16–20, 2024, Vienna, Austria

Why EG outperforms CG in Task 2 but without statistical
significance? In Task 2 (i.e., refactoring by method extraction), the
CoEdPilot users become more experienced in adapting our tool by
switching between various functions such as location prediction,
edit generation, edit option selection, etc. The accurate edit loca-
tion can largely mitigate the efforts in finding the cross-file code
duplication for the new function. Compared to the CG participants
with manually summarized edit patterns, the EG group gradually
outperforms the CG group (the 𝑝-value 0.07 is closer to 0.05).
How EG outperforms CG in Task 3? Task 3 (i.e., enhance the
model training with scale function) is the most difficult task, where
the editing pattern cannot be captured by keyword search. For
example, one edit to insert a scale parameter is associated with
another edit to insert a follow-up decision logics with the scale
variable. In such a scenario, EG outperforms CG in general.

Nevertheless, we observe that the performance of the partici-
pants varies, some accomplish the task in less than 5 minutes (e.g.,
P2) while some take a longer time (e.g., P1, P8, and P9). We inves-
tigate their tool logs and videos, finding that some participants
modify the edit content with their own interpretation, which leads
to the buggy code. Taking the buggy edit as the prior edits, Co-
EdPilot can generate confusing edits afterwards. Only by running
the test cases to validate the results, the participants can realize
they produce a bug during the editing. Human mistakes in such an
interaction-based tool are a long-standing problem, we will address
the issue in our future work. Further, the CoEdPilot group accepts
recommended 69.3% edit options, among which they modify 31.6%
generated edits. For the space limit, more statistics of user behaviors
in the study are available at [6].

7 Threat to validity
Several aspects of the user study may impair its validity:
Internal Validity: In this study, the experiment group may face
a steeper learning curve, while the control group is already ac-
quainted with CoPilot. This learning disparity could lead to ob-
served differences in the test that are attributed to learning effects
rather than the actual performance of the extension.
External validity: The edit tasks are simplified versions of code
derived from actual commits and equipped with comprehensive
instructions. This modification might deviate from the real editing
scenario. Moreover, as edit tasks exclusively focus on Python in this
study, such specificity choice could confound the interpretation of
the plugin’s effectiveness.
Statistical Validity: Due to the limitation of time and resources,
we recruited 18 participants in the study. The relatively small size
may not provide sufficient statistical power to detect genuine dif-
ferences in the effectiveness of the extension. Consequently, the
generalizability and robustness of the study findings might be com-
promised.

8 Related Work
Code Generation. Code generation is long standing software
engineering task [13, 35, 48, 55, 56], which starts from sequence-
based and tree-based approaches [39, 49], and gravitates towards
pre-trained language models, such as BERT [17], GPT [12], T5 [26,
46], CodeBERT [19], GraphCodeBERT [24], DietCodeBERT [60],

CodeT5 [54], CodeT5+ [53], CodeT [16], and Incoder [22]. Recently,
StarCoder [34] is trained with over 8 programming languages, Git
commits, GitHub issues, and Jupyter notebooks. It outperforms
existing open Code LLMs on popular programming benchmarks
and matches or surpasses closed models such as code-cushman-
001 from OpenAI (the original Codex [43] model). Meanwhile, our
approach generates incremental edits, rather than new code.
Code Edit Generation. Among the work to edit code [14, 15, 27,
36, 38, 58, 59, 61], Codit [14] is the first to introduce tree-based
neural networks for predicting the edits. Following their tree model
structure, Recoder [61] introduces another abstract syntax tree
(AST) reader along with the code reader to outperform the Codit
model. Further, CURE [27] introduces the pre-training models for
automatic program repair. CoditT5 [58] pre-train a CodeT5 [54] base
model with the input including natural language comments and edit
code hunk and the output including an edit plan. The current state-
of-the-art transformer-based model is GRACE [25], which trains a
prompting large language model [57] with a designed prompt to
include the associated code update. Overwatch [59] symbolically
analyzes edit sequence patterns by formulating them into rules
based on prior program transformations. Our solution, CoEdPilot, is
complementary to the majority of the transformer-based code-edit
generation model. In addition to exploring the interactive nature
of code edits, we further learn to capture the relevant prior edits
and subsequent edit location.

9 Conclusion
In this work, we introduce CoEdPilot, an end-to-end framework to
interactively generate code edits by orchestrating a set of neural
transformers as components, regarding prior edit analysis, subse-
quent edit analysis, and edit generation. Our extensive experiments
show that CoEdPilot is able to predict the edit location and gen-
erate edit options in an effective way. Further, the framework is
complementary to a set of state-of-the-art edit generators to boost
their performance. Our user study shows that CoEdPilot as a VS
Code plugin is effective in assisting programmers in practice. In
the future, we will improve the quality of the training dataset for a
more effective model and address the potential mistaken human
feedback in tool design.

10 Data availability
Our models and datasets are published on HuggingFace [5], both
source code and VS Code extension are available on GitHub [3, 4].

Acknowledgments
This research is supported in part by National Key Research and
Development Program of China (Grant No.2023YFB4503802), the
Bytedance Network Technology, the Minister of Education, Singa-
pore (T2EP20120-0019, MOET32020-0004), the National Research
Foundation, Singapore, and Cyber Security Agency of Singapore
under its National Cybersecurity Research and Development Pro-
gramme (Award No. NRF-NCR_TAU_2021-0002), National Research
Foundation, Singapore, and the Cyber Security Agency under its
National Cybersecurity R&D Programme (NCRP25-P04-TAICeN),
DSO National Laboratories under the AI Singapore Programme
(AISG Award No: AISG2-GC-2023-008).

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chenyan Liu, Yufan Cai, Yun Lin, Yuhuan Huang, Yunrui Pei, Bo Jiang, Ping Yang, Jin Song Dong, and Hong Mei

References
[1] 2023. CrossEntropyLoss — PyTorch 2.1 documentation. https://pytorch.org/docs/

stable/generated/torch.nn.CrossEntropyLoss.html.
[2] 2023. Visual Studio Code. https://code.visualstudio.com/.
[3] 2024. code-philia/CoEdPilot-extension: Extension for CoEdPilot. https://github.

com/code-philia/CoEdPilot-extension.
[4] 2024. code-philia/CoEdPilot: Source code for CoEdPilot. https://github.com/code-

philia/CoEdPilot.
[5] 2024. CoEdPilot - a code-philia Collection. https://huggingface.co/collections/

code-philia/coedpilot-65ee9df1b5e3b11755547205.
[6] 2024. CoEdPilot website. https://sites.google.com/view/coedpilot/home.
[7] Danyah Alfageh, HosamAlhakami, Abdullah Baz, Eisa Alanazi, and Tahani Alsub-

ait. 2020. Clone Detection Techniques for JavaScript and Language Independence.
International Journal of Advanced Computer Science and Applications 11, 4 (2020).
https://doi.org/10.14569/IJACSA.2020.01104102

[8] Karim Ali and Ondřej Lhoták. 2013. Averroes: Whole-program analysis without
the whole program. In European Conference on Object-Oriented Programming.
Springer, 378–400. https://doi.org/10.1007/978-3-642-39038-8_16

[9] Anonymous. 2023. An commit example to modify a number of comments. https:
//github.com/golang/go/commit/e914671f5d5e72b2f897a9f2dfc6bf2203d3254a.

[10] Anonymous. 2023. An commit example with edit pattern. https://github.com/
golang/go/commit/4bf1ca4b0ce9a08f4c45d68fe49857914f668f69.

[11] Anonymous. 2023. An commit example with single-directed edit inference. https:
//github.com/golang/go/commit/400e24a8be852e7b20eb4af1999b28c20bb4ea21.

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901. https://doi.org/10.48550/
arXiv.2005.14165

[13] Yufan Cai, Yun Lin, Chenyan Liu, Jinglian Wu, Yifan Zhang, Yiming Liu, Yeyun
Gong, and Jin Song Dong. 2024. On-the-Fly Adapting Code Summarization
on Trainable Cost-Effective Language Models. Advances in Neural Information
Processing Systems 36 (2024).

[14] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.
2022. CODIT: Code Editing With Tree-Based Neural Models. IEEE Transactions
on Software Engineering 48, 4 (2022), 1385–1399. https://doi.org/10.1109/TSE.
2020.3020502

[15] S. Chakraborty and B. Ray. 2021. On Multi-Modal Learning of Editing Source
Code. In 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE Computer Society, Los Alamitos, CA, USA, 443–455.
https://doi.org/10.1109/ASE51524.2021.9678559

[16] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou,
and Weizhu Chen. 2022. Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397 (2022). https://doi.org/10.48550/arXiv.2207.10397

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
(June 2019), 4171–4186. https://doi.org/10.18653/v1/N19-1423

[18] Schaeffer Duncan, Andrew Walker, Caleb DeHaan, Stephanie Alvord, Tomas
Cerny, and Pavel Tisnovsky. 2021. Pyclone: A Python Code Clone Test Bank
Generator. In Information Science and Applications: Proceedings of ICISA 2020.
Springer, 235–243. https://doi.org/10.1007/978-981-33-6385-4_22

[19] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A pre-
trained model for programming and natural languages. EMNLP (2020). https:
//doi.org/10.18653/v1/2020.findings-emnlp.139

[20] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319–349. https://doi.org/10.1145/
24039.24041

[21] Markus Freitag and Yaser Al-Onaizan. 2017. Beam Search Strategies for Neural
Machine Translation. In Proceedings of the First Workshop on Neural Machine
Translation. Association for Computational Linguistics, Vancouver, 56–60. https:
//doi.org/10.18653/v1/W17-3207

[22] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A
Generative Model for Code Infilling and Synthesis. In The Eleventh International
Conference on Learning Representations. https://doi.org/10.48550/arXiv.2204.
05999

[23] GitHub. 2023. GitHub Copilot. https://github.com/features/copilot
[24] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long

Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. GraphCodeBERT:
Pre-training code representations with data flow. The International Conference
on Learning Representations (2020). https://doi.org/10.48550/arXiv.2009.08366

[25] Priyanshu Gupta, Avishree Khare, Yasharth Bajpai, Saikat Chakraborty, Sumit
Gulwani, Aditya Kanade, Arjun Radhakrishna, Gustavo Soares, andAshish Tiwari.
2023. Grace: Language Models Meet Code Edits. In Proceedings of the 31st ACM

Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE 2023). Association for ComputingMachin-
ery, New York, NY, USA, 1483–1495. https://doi.org/10.1145/3611643.3616253

[26] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, et al. 2021. Pre-trained models: Past,
present and future. AI Open 2 (2021), 225–250. https://doi.org/10.48550/arXiv.
2106.07139

[27] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). 1161–1173. https://doi.
org/10.1109/ICSE43902.2021.00107

[28] Wuxia Jin, Yuanfang Cai, Rick Kazman, Qinghua Zheng, Di Cui, and Ting Liu.
2019. ENRE: A Tool Framework for Extensible eNtity Relation Extraction. In
2019 IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). 67–70. https://doi.org/10.1109/ICSE-Companion.
2019.00040

[29] Wuxia Jin, Dinghong Zhong, Yuanfang Cai, Rick Kazman, and Ting Liu. 2022.
Evaluating the Impact of Possible Dependencies on Architecture-level Main-
tainability. IEEE Transactions on Software Engineering (2022), 1–1. https:
//doi.org/10.1109/TSE.2022.3171288

[30] Iman Keivanloo, Feng Zhang, and Ying Zou. 2015. Threshold-free code clone
detection for a large-scale heterogeneous java repository. In 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 201–210. https://doi.org/10.1109/SANER.2015.7081830

[31] Rob Kitchin and Martin Dodge. 2014. Code/space: Software and everyday life. Mit
Press. https://doi.org/10.7551/mitpress/9780262042482.001.0001

[32] Thomas D LaToza and Brad A Myers. 2010. Developers ask reachability ques-
tions. In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering-Volume 1. 185–194. https://doi.org/10.1145/1806799.1806829

[33] Jia Li, Ge Li, Zhuo Li, Zhi Jin, Xing Hu, Kechi Zhang, and Zhiyi Fu. 2023. CodeEdi-
tor: Learning to Edit Source Codewith Pre-TrainedModels. ACMTrans. Softw. Eng.
Methodol. 32, 6, Article 143 (sep 2023), 22 pages. https://doi.org/10.1145/3597207

[34] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).
https://doi.org/10.48550/arXiv.2305.06161

[35] Xiaonan Li, Daya Guo, Yeyun Gong, Yun Lin, Yelong Shen, Xipeng Qiu, Daxin
Jiang, Weizhu Chen, and Nan Duan. 2022. Soft-labeled contrastive pre-training
for function-level code representation. arXiv preprint arXiv:2210.09597 (2022).

[36] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundare-
san. 2022. Automating Code Review Activities by Large-Scale Pre-Training.
In Proceedings of the 30th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 1035–1047.
https://doi.org/10.1145/3540250.3549081

[37] Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang
Mao. 2023. CCT5: A Code-Change-Oriented Pre-Trained Model. arXiv preprint
arXiv:2305.10785 (2023). https://doi.org/10.1145/3611643.3616339

[38] Yun Lin, Xin Peng, Zhenchang Xing, Diwen Zheng, and Wenyun Zhao. 2015.
Clone-based and interactive recommendation for modifying pasted code. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
520–531.

[39] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomáš
Kočiský, Fumin Wang, and Andrew Senior. 2016. Latent Predictor Networks for
Code Generation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, 599–609. https://doi.org/10.18653/v1/P16-1057

[40] HusseinMozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2022. Reading
between the lines: Modeling user behavior and costs in AI-assisted programming.
arXiv preprint arXiv:2210.14306 (2022). https://doi.org/10.48550/arXiv.2210.14306

[41] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen,
and Hridesh Rajan. 2013. A study of repetitiveness of code changes in software
evolution. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 180–190. https://doi.org/10.1109/ASE.2013.6693078

[42] Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copilot’s
code suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories. 1–5. https://doi.org/10.1145/3524842.3528470

[43] OpenAI. 2020. CodeX. https://openai.com/blog/openai-codex.
[44] OpenAI. 2021. ChatGPT. https://openai.com/chatgpt. Accessed on March 29,

2023.
[45] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:

a Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Pierre
Isabelle, Eugene Charniak, and Dekang Lin (Eds.). Association for Computational
Linguistics, Philadelphia, Pennsylvania, USA, 311–318. https://doi.org/10.3115/
1073083.1073135

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://code.visualstudio.com/
https://github.com/code-philia/CoEdPilot-extension
https://github.com/code-philia/CoEdPilot-extension
https://github.com/code-philia/CoEdPilot
https://github.com/code-philia/CoEdPilot
https://huggingface.co/collections/code-philia/coedpilot-65ee9df1b5e3b11755547205
https://huggingface.co/collections/code-philia/coedpilot-65ee9df1b5e3b11755547205
https://sites.google.com/view/coedpilot/home
https://doi.org/10.14569/IJACSA.2020.01104102
https://doi.org/10.1007/978-3-642-39038-8_16
https://github.com/golang/go/commit/e914671f5d5e72b2f897a9f2dfc6bf2203d3254a
https://github.com/golang/go/commit/e914671f5d5e72b2f897a9f2dfc6bf2203d3254a
https://github.com/golang/go/commit/4bf1ca4b0ce9a08f4c45d68fe49857914f668f69
https://github.com/golang/go/commit/4bf1ca4b0ce9a08f4c45d68fe49857914f668f69
https://github.com/golang/go/commit/400e24a8be852e7b20eb4af1999b28c20bb4ea21
https://github.com/golang/go/commit/400e24a8be852e7b20eb4af1999b28c20bb4ea21
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1109/TSE.2020.3020502
https://doi.org/10.1109/TSE.2020.3020502
https://doi.org/10.1109/ASE51524.2021.9678559
https://doi.org/10.48550/arXiv.2207.10397
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-981-33-6385-4_22
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.18653/v1/W17-3207
https://doi.org/10.18653/v1/W17-3207
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2204.05999
https://github.com/features/copilot
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.1145/3611643.3616253
https://doi.org/10.48550/arXiv.2106.07139
https://doi.org/10.48550/arXiv.2106.07139
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1109/ICSE-Companion.2019.00040
https://doi.org/10.1109/ICSE-Companion.2019.00040
https://doi.org/10.1109/TSE.2022.3171288
https://doi.org/10.1109/TSE.2022.3171288
https://doi.org/10.1109/SANER.2015.7081830
https://doi.org/10.7551/mitpress/9780262042482.001.0001
https://doi.org/10.1145/1806799.1806829
https://doi.org/10.1145/3597207
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.1145/3540250.3549081
https://doi.org/10.1145/3611643.3616339
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.48550/arXiv.2210.14306
https://doi.org/10.1109/ASE.2013.6693078
https://doi.org/10.1145/3524842.3528470
https://openai.com/blog/openai-codex
https://openai.com/chatgpt
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

CoEdPilot: Recommending Code Edits with Learned Prior Edit Relevance, Project-wise Awareness, and Interactive Nature ISSTA ’24, September 16–20, 2024, Vienna, Austria

[46] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. 21, 1, Article
140 (jan 2020), 67 pages. https://doi.org/10.48550/arXiv.1910.10683

[47] Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. 2019. Masked
language model scoring. arXiv preprint arXiv:1910.14659 (2019). https://doi.org/
10.18653/v1/2020.acl-main.240

[48] Jiho Shin and Jaechang Nam. 2021. A survey of automatic code generation from
natural language. Journal of Information Processing Systems 17, 3 (2021), 537–555.
https://doi.org/10.3745/JIPS.04.0216

[49] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020.
Treegen: A tree-based transformer architecture for code generation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 8984–8991.
https://doi.org/10.48550/arXiv.1911.09983

[50] Ekincan Ufuktepe, Tugkan Tuglular, and Kannappan Palaniappan. 2022. Tracking
code bug fix ripple effects based on change patterns using markov chain models.
IEEE Transactions on Reliability 71, 2 (2022), 1141–1156. https://doi.org/10.1109/
TR.2022.3167943

[51] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224. https://doi.org/10.1145/
1925805.1925818

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017). https:
//doi.org/10.48550/arXiv.1706.03762

[53] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and
Steven CH Hoi. 2023. CodeT5+: Open code large language models for code
understanding and generation. arXiv preprint arXiv:2305.07922 (2023). https:
//doi.org/10.48550/arXiv.2305.07922

[54] YueWang,WeishiWang, Shafiq Joty, and Steven CHHoi. 2021. CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021). https://doi.org/10.48550/

arXiv.2109.00859
[55] Chen Yang, Yan Liu, and Changqing Yin. 2021. Recent Advances in Intelligent

Source Code Generation: A Survey on Natural Language Based Studies. Entropy
23, 9 (2021), 1174. https://doi.org/10.3390/e23091174

[56] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
and Xin Peng. 2023. No More Manual Tests? Evaluating and Improving ChatGPT
for Unit Test Generation. arXiv preprint arXiv:2305.04207 (2023). https://doi.org/
10.48550/arXiv.2305.04207

[57] Biao Zhang, Barry Haddow, and Alexandra Birch. 2023. Prompting large language
model for machine translation: A case study. arXiv preprint arXiv:2301.07069
(2023). https://doi.org/10.48550/arXiv.2301.07069

[58] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos
Gligoric. 2022. CoditT5: Pretraining for Source Code and Natural Language
Editing. In International Conference on Automated Software Engineering. https:
//doi.org/10.48550/arXiv.2208.05446

[59] Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Al-
lamanis, Titus Barik, Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza,
Gustavo Soares, and Ashish Tiwari. 2022. Overwatch: Learning Patterns in Code
Edit Sequences. Proc. ACM Program. Lang. 6, OOPSLA2, Article 139 (oct 2022),
29 pages. https://doi.org/10.1145/3563302

[60] Zhaowei Zhang, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Diet code
is healthy: Simplifying programs for pre-trained models of code. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1073–1084. https://doi.org/10.48550/
arXiv.2206.14390

[61] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 341–353. https://doi.org/10.1145/3468264.3468544

Received 16-DEC-2023; accepted 2024-03-02

https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.3745/JIPS.04.0216
https://doi.org/10.48550/arXiv.1911.09983
https://doi.org/10.1109/TR.2022.3167943
https://doi.org/10.1109/TR.2022.3167943
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.3390/e23091174
https://doi.org/10.48550/arXiv.2305.04207
https://doi.org/10.48550/arXiv.2305.04207
https://doi.org/10.48550/arXiv.2301.07069
https://doi.org/10.48550/arXiv.2208.05446
https://doi.org/10.48550/arXiv.2208.05446
https://doi.org/10.1145/3563302
https://doi.org/10.48550/arXiv.2206.14390
https://doi.org/10.48550/arXiv.2206.14390
https://doi.org/10.1145/3468264.3468544

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Subsequent Edit Analysis
	3.2 Prior Edit Analysis
	3.3 Edit Generation
	3.4 Model Training

	4 Tool Design
	5 Experiment
	5.1 Benchmark Construction
	5.2 Experiment Setup
	5.3 Results

	6 User Study
	7 Threat to validity
	8 Related Work
	9 Conclusion
	10 Data availability
	Acknowledgments
	References

